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dd and Gigerenzer (2003) summarize three

logical rationality. The concept adopted in

5).
a b s t r a c t

We develop a formal model to investigate the implications of bounded rationality for

the origin and structure of loss aversion and optimism in marketplaces. Based on

Simon’s original description, we explicitly model bounded rationality as a decision

mechanism that captures incomplete information, psychological adaptation, and

rational behavior. We find that the endogenous loss aversion and optimism emerge

when the degree of information incompleteness reaches a certain threshold, and both

grow to be more prominent when information becomes sparser. Our results highlight

that the psychological biases could be expected to take advantage of perceived

information incompleteness in terms of value creation.

& 2012 Elsevier B.V. All rights reserved.
‘‘Life is the blended harmony of the yin and yang.’’—Zhuangzi
1. Introduction

Reviewing the recent literature indicates that loss aversion and optimism often appear as two systematic biases of
individual investors in attaining their goals (e.g., Hirshleifer, 2001; Daniel et al., 2002; Barberis and Thaler, 2003;
Dellavigna, 2009). These psychological biases are understood to be at the root of some robust financial phenomena, but
their source mechanism is not yet well reconciled with the standard economic theory. Especially, a coherent way to
illustrate the coexistence of the two seemingly mutually exclusive features and to appreciate explicitly how they arise in
the first place is still lacking. The purpose of this paper is to propose a mechanism bearing on these issues from the
perspective of the ‘‘bounded rationality of individuals’’ (Simon, 1957).

Bounded rationality has vast applications in a wide range of areas, and is also understood in different ways by different
people.1 Here, we choose an adaptive aspect of bounded rationality as the guiding principle of this paper. This principle is
highlighted in Simon’s own analogy between bounded rationality and a pair of scissors: ‘‘Human rational behavior . . . is
ll rights reserved.
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shaped by a scissors whose two blades are the structure of task environments and the computational capabilities of the actor’’
(Simon, 1990, P.7). This insight allows us to characterize bounded rationality as a mechanism through which those
psychological features are shaped to cope with incomplete information, which arises from the gap between the complexity
of the environment where people operate and their limited mental abilities. We refer to the optimal design stance toward
human traits as psychological adaptation. The key question about the economic rationale of loss aversion and optimism
then becomes: Can psychological adaptation drive individual decision making with incomplete information to occur in a
way that reflects the psychological biases within the value-maximization hypothesis?

To address this question, we build a formal model on three key elements. First, investors have incomplete information
regarding to the drift parameter (i.e., the expected rate of return) of the stock price process. Second, investors are
completely ‘‘Bayesian’’ rational. They are both Bayesian and inter-temporally optimizers in maximizing subjective
satisfaction. We construct their rational behavior by deriving explicit forms for the solutions of a dynamic allocation
problem where investors are prone to preference bias (loss aversion), belief bias (optimism or pessimism), and incomplete
information (parameter uncertainty). Third, psychological adaptation endows investors with the desired traits of loss
aversion and optimism (pessimism) in terms of value maximization. Specifically, the psychological biases, if any, are
endogenized in our model as the solutions of maximizing the objective expected growth rate of wealth accumulation. The
solutions allow us to evaluate whether psychological adaptation plus incomplete information lead to systematic biases. By
comparing the optimal belief and preference features of investors with different degrees of information incompleteness,
we also see the causal relationship between incomplete information and the two psychological biases.

Our results show that endogenous loss aversion and optimism will emerge once the level of information incomplete-
ness reaches a certain threshold. More specifically, there are two regions: the ‘‘simple’’ region where information is rather
complete, and the ‘‘complex’’ region where information is rather incomplete. In the simple region, loss aversion and
optimism cannot emerge as the optimal attitudes. In the complex region, some appropriate alignments of loss aversion and
optimism are beneficial for making good decisions, and hence both arise in the optimal attitudes. In this region, it is also
clearly shown that such endogenous biases will increase with the degree of information incompleteness.

Although incomplete information has similar implications for both loss aversion and optimism in our model, the
relevant mechanisms are essentially different. Loss aversion itself, without the help of optimism, can benefit investors
when information is rather incomplete. The basic reason lies in the way that loss aversion makes investors more cautious
to take unrewarded risk due to information incompleteness. However, in our model, a belief bias (optimism or pessimism)
itself is always a disadvantage, which is in accordance with a series of recent theoretical studies (Sandroni, 2000; Blume
and Easley, 2006; Yan, 2008). But optimism can achieve a certain efficiency in its coordination with loss aversion as it can
counterbalance the effect of loss aversion that leads to less allocations to stocks. As such, information incompleteness
leaves ‘‘rooms’’ for loss aversion, and loss aversion makes ‘‘rooms’’ for optimism.

The contribution of this paper is thus to formalize the bounded rationality mechanism in an adaptive form, to
demonstrate how it can reconcile loss aversion and optimism with the value-maximization hypothesis, and to derive a
general relationship between incomplete information and the psychological biases. The explicit modeling of investor
psychology helps us for the better understanding of the complexity of systematic psychological biases from standard
rationality and how they arise in the first place. This also suggests several applications. For example, it offers an immediate
justification for the premises of loss aversion and optimism in financial studies, e.g., Benartzi and Thaler (1995).

Our paper relates to the literature on natural or market selection. Our model accepts the key results that have been
formally identified by the market-selection analysis in Blume and Easley (1992, 2006), the maximization of expected
wealth growth rate and the Bayesian learning, as the basic assumptions. Accordingly, the selection pressure (e.g., from
market power and/or evolution) can be regarded as a good reason that individuals behave as if they are endowed with
psychological adaptation mechanisms about loss aversion and optimism, and our bounded-rationality research program
can be viewed as an evolutionarily informed framework. On a technical note, however, our work is not a general survival
analysis. Our functional argument about loss aversion and optimism primarily is of an adaptive, rather than survival,
nature. In fact, the two approaches are complementary, but suited to different questions. Our results, although do not
directly guarantee that loss-averse and optimistic agents can survive in the long run, immediately provide a
microfoundation for the argument that bounded rationality serves as a source of loss aversion and optimism.

Our paper is closely related to the literature on parameter uncertainty and learning in financial markets. A number of
studies have investigated the implications of parameter uncertainty and learning on various investment problems (see,
Pástor and Veronesi, 2009). Our paper incorporates reference-dependent subjective expected utility into the works of
Lakner (1995, 1998), and hence also belongs to the literature on dynamic problems with reference-related objective
functions, e.g., Basak (1995), Carpenter (2000), Basak and Shapiro (2001), Berkelaar et al. (2004). However, none of these
papers investigates the dynamic portfolio choice problem that we specifically address in this paper, that is, the problem
that accounts for both nonstandard subjective expected utility and parameter uncertainty.

Our paper proceeds as follows. We introduce in Section 2 the continuous-time model we adopt for incorporating
incomplete information, loss aversion, and optimism. Then we present in Section 3 the optimal solutions of the model, and
offer some comparative statics analysis of how information incompleteness, preference bias, and belief bias determine
investor behavior. In Section 4, we analyze the relationships among loss aversion, optimism, incomplete information, and
other components in our framework. In Section 5, we discuss the model’s predictions and their implications. We finally
conclude our paper in Section 6.
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2. Model framework

We consider a continuous-time financial market consisting of a riskless bond with a constant interest rate, rf, and a
risky stock, whose price S(t) satisfies

dSðtÞ

SðtÞ
¼ m dtþs dBðtÞ, Sð0Þ ¼ S0, ð1Þ

where m and s40 are constants and B(t) is the standard Brownian motion. In the continuous-time setting, Merton (1980)
has demonstrated that the optimal estimator of the volatility (or variance) converges to the true value, while the estimator
of the expected return is not. Then, following the literature on incomplete information (see, e.g., Gennotte, 1986; Brennan,
1998; Lakner, 1998; Rogers, 2001), we assume that investors know rf and s exactly, but do not know the drift parameter m
exactly, instead, having a normal prior belief on m at time zero,

~m �Nðm0,v0Þ,

where Nðm0,v0Þ denotes the normal distribution function with mean m0 and variance v0. As the variance of the mean
estimation cannot exceed the population variance, we assume v0rs2.

In our model, investors can observe the stock price, and update their beliefs on m in a Bayesian way as the stock price
process evolves. Denote the investor’s filtration generated by the stock price process as fF S

t ¼ nðSðsÞ,0rsrtÞg. Accordingly,
the conditional mean of the drift parameter is mðtÞ ¼ E½m9F S

t �, and the conditional mean of the market price of risk
(y¼ ðm�rf Þ=s) is

ymðtÞ ¼ E½y9F S
t � ¼

mðtÞ�rf

s :

As m is unknown, investors are unable to observe the noise term B(t) from Eq. (1). Rather, they are able to deduce the
following related processes:

~BðtÞ ¼ ytþBðtÞ and BðtÞ ¼ ~BðtÞ�

Z t

0
ymðuÞ du,

where ~BðtÞ is the risk-neutral Brownian motion, and BðtÞ is a standard Brownian motion with respect to the price filtration
F S

t (Liptser and Shiryayev, 1977).
From the theory of the classical Kalman–Bucy filter (Liptser and Shiryayev, 1977), we know that the conditional

expectation ymðtÞ satisfies

dymðtÞ ¼ gðtÞðd ~BðtÞ�ymðtÞdtÞ, ymð0Þ ¼ y0 ¼
m0�rf

s
, ð2Þ

and the conditional variance gðtÞ ¼ E½ðy�ymðtÞÞ
29F S

t � is determined by the following Riccati equation:

dgðtÞ
dt
¼�g2ðtÞ, gð0Þ ¼ g0 ¼

v0

s2
,

which leads to its solution as follows:

gðtÞ ¼ g0

g0tþ1
and ymðtÞ ¼

y0þg0
~BðtÞ

g0tþ1
: ð3Þ

Let W (t) be the wealth of the investor at time t and pðtÞ be the fraction of the wealth invested in the risky stock at time
t. Then, the corresponding wealth process is governed by

dWðtÞ ¼WðtÞfðpðtÞðm�rf Þþrf ÞdtþpðtÞs dBðtÞg

¼WðtÞfðpðtÞðmðtÞ�rf Þþrf ÞdtþpðtÞs dBðtÞg, ð4Þ

with Wð0Þ ¼W040 being the initial wealth of the investor.
As suggested by the phrase ‘‘survival of the richest’’, we take the growth rate of wealth accumulation, i.e., the

continuously compounded (log) return of the investment

RðTÞ ¼ ln
WðTÞ

W0
,

as the measure of the investor’s relative success (i.e., the term ‘‘richest’’) in the market. Although the wealth growth rate
has also been defined as R(T)/T in some other studies, the two definitions are clearly equivalent as T is given as an
exogenous variable in this study. As known from the literature (e.g., Blume and Easley, 1992; Hakansson and Ziemba,
1995; Robson, 2002), the expected log-return maximization, sometimes also referred to as the Kelly criterion (Kelly, 1956),
is an appropriate criterion for evolutionary success in the conventional asset market setting, because its strategy generates
almost surely the greatest wealth among all strategies in the long run. Hence, we formulate the adaptiveness criterion as

max E½RðTÞ�: ðP1Þ
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Note that the expectation E½�� is based on the actual distribution of the stock price process, where incomplete information
is of irrelevance.

Following the common practice of building theories in behavioral economics, we retain the basic architecture of the
standard model (P1) and add to it assumptions about incomplete information, loss aversion, and optimism to formulate
investor behavior. We use the relative imprecision of the prior belief,

g0 ¼ v0=s2 2 ½0,1�,

to measure the level of information incompleteness. As gðtÞ is a monotonically increasing function of g0, the level of g0

reflects the incomplete extent of the investor’s perceived information at any time t. In our model, we treat g0 as an
exogenous variable.

Besides incomplete information, the investor is also prone to the belief and preference biases (if any). To measure belief
bias, we adopt the ratio of the systematic component of expectation error to the true parameter:

b¼
m0�m
m : ð5Þ

Hence, the cases with b40 imply optimistically biased beliefs.
For the preference bias, we adopt the value function of the following form2:

uðx,lÞ ¼
x�x, xZx,

lðx�xÞ, xox:

(

where x is the investment return, x is the reference level, and lZ1 is the coefficient of preference bias (loss aversion).
When l41, investors hold loss-averse preferences.

The investor’s subjective value function is then constructed as

uðRðTÞ,lÞ,

where the reference return x is specified as R ¼ lnðW=W0Þ with W being the corresponding reference wealth. In brief,
investors behave optimally in the sense of maximizing their subjective expected satisfaction,

max Es
½uðRðTÞ,lÞ�, ðP2Þ

where Es
½�� denotes the subjective expectation based on the prior belief (m0,v0), hence (b,g0), and the stock price process,

i.e., E½�9F S
0�.

The question now becomes how the belief and preference biases (b and l) are determined? According to the
adaptiveness criterion (P1), we can then express the endogenous psychological biases within our bounded rationality
program as the solution of the following maximization problem:

max
l,b

E½RðT9l,bÞ�, s:t: RðT9l,bÞ is the return of Problem ðP2Þ: ðP10Þ

This problem can be viewed as an attempt to achieve a match between the internal mind, the problem (P2), and the
external market, the problem (P1).

When the investor’s information is complete (i.e., m is known), the adaptation problem has a simple solution: l¼ 1,
b¼0. That said, loss aversion and optimism are not required. When information incompleteness is inherent in the decision
making process of the investor, however, this perfect alignment (l¼ 1, b¼0) is not necessarily optimal in the adaptiveness
sense: loss aversion and optimism may actually be beneficial to the extent to which they help to enhance the actual
expected wealth growth rate. In this case, the adaptation problem (P10) then becomes crucial. Simon (1986) has addressed
this issue well:
2 T

(losses

loss av
‘‘If, on the other hand, we accept the proposition that both the knowledge and the computational power of the
decision maker are severely limited, then we must distinguish between the real world and the actor’s perception of
it and reasoning about it. . . . Our theory must include not only the reasoning processes but also the processes that
generate the actor’s subjective representation of the decision problem, his or her frame.’’ (Simon, 1986, P. 211)
The actual process by which mental devices design ‘‘the actor’s subjective representation of the decision problem’’ can
be quite complicated, but that is not our concern. Here, we focus on how loss aversion and optimism are associated with
information incompleteness. The adaptation problem (P10) allows us to make meaningful guesses about those associations
that human mind embodies in an elegant and parsimonious way (Cosmides and Tooby, 1994). Recently, neuroscience
studies (Sharot et al., 2007; Tom et al., 2007) demonstrate that the underlying mechanisms of loss aversion and optimism
may be biological in nature. At the biological level, one possible explanation is thus that such associations are designed by
natural selection to solve the recurrent intertemporal economic tradeoff over the history of human being (Robson, 2002)
and remain functional to solve today’s trading problems.
his functional form captures the loss averse feature, and omits other potential preference features, such as risk-aversion (risk-seeking) over gains

) of the prospect theory formulated by Kahneman and Tversky (1979). We use this rather simple preference structure to focus more directly on

ersion in our analysis. This restrictive setting is also supported by the observation of Benartzi and Thaler (1995).
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Before turning into the application, there are several points worth noting. First, this paper employs a finite-horizon
partial-equilibrium setting, in sharply contrast with the infinite-horizon general-equilibrium setting in the literature on
market selection (e.g., Sandroni, 2000; Blume and Easley, 2006; Yan, 2008). In doing so, as stated in the Introduction, the
paper is primarily on adaptation, which might be expected in the short run (Robson, 2002), rather than market selection,
which requires a long time to become manifest (Yan, 2008). As such, the bounded-rationality approach in this paper is
helpful for shedding new light on how those behavioral regularities occur in the context of investment decisions.

Second, the price taking setting also distinguishes our model from the noise-trader models with imperfectly
competitive markets pioneered by De Long et al. (1990, 1991). In such noise-trader models, the mechanism that the
demands due to investor sentiment affect price levels plays a central role in understanding the prevalence and persistence
of those biases, which is not involved in this paper. Meanwhile, it is difficult for this class of models to explain why loss
aversion and optimism arise in the first place.3

Third, our development of bounded rationality is not bounded by cognitive illusion or self-deception (see, e.g.,
Hirshleifer, 2001). Thus, loss aversion and optimism in this paper should not be viewed as the impulsive emotions simply
due to hedonic feelings (e.g., Brunnermeier and Parker, 2005). Rather, these features are economically plausible because
our adaptation channel through which information incompleteness produces loss aversion and optimism is its influence
on value creation. In this sense, our results support the engagement of loss aversion and optimism in deliberation.

In fact, it is impossible to be fully comprehensive on the rich implications of bounded rationality and the potential
sources of psychological biases. Our focus is how loss aversion and optimism, that go to make up investor behavior, could
arise and change as the optimal cognitive responses of individual investors with respect to their incomplete-information
bounds. The contribution of this paper is formalized this mechanism in terms of the basic market rule, value or profit
maximization.

3. Optimization under preference bias, belief bias, and incomplete information

3.1. Investor’s optimization

Similar to Lakner (1995, 1998), we apply the martingale method to restate the investor’s dynamic optimization
problem in (P2) as the following static variational problem:

max
WðTÞZ0

Es
½UðWðTÞÞ�

s:t: Es
½zðTÞWðTÞ� ¼W0, ðP20Þ

where the state-price density process zðtÞ satisfies

zðtÞ ¼ exp �rf t�

Z t

0
ymðuÞ d ~BðuÞþ

1

2

Z t

0
ymðuÞ

2 du

� �
, zð0Þ ¼ 1: ð6Þ

By Itô formula, we can further derive the exact analytical expression of the state-price density process as

zðtÞ ¼ gðtÞexp �
1

2

g0tþ1

g0

ymðtÞ
2

� �
, ð7Þ

where gðtÞ ¼ expf�rf tþ 1
2 lnðg0tþ1Þþ 1

2 ðm0�rf Þ
2=v0g. It is clear that the state-price density process zðtÞ is bounded within

[0, g(t)].
The following proposition characterizes the optimal terminal wealth of the investor, while its proof can be found in the

Appendix.

Proposition 1. The investor’s optimal terminal wealth is

WðTÞ ¼

1

yzðTÞ
if zðTÞoz,

W if zrzðTÞrz,

l
yzðTÞ

if zðTÞ4z,

8>>>>>><
>>>>>>:

ð8Þ

where z ¼ 1=ðyW Þ,z ¼ l=ðyW Þ and yZ0 is a constant satisfying Es
½WðTÞzðTÞ� ¼W0.

In order to obtain the solution for the adaptation problem in (P10), we need to consider the actual expected log-return of
the investor examined in Proposition 1. Without loss of generality, we normalize the initial wealth at W0 ¼ 1. Then, by
some calculations, we can obtain the following corollary with its proof being given in the Appendix.
3 In addition, the class of imperfectly competitive models uses arithmetic return to justify their mechanisms, while our model uses log return, which

is consistent with utilities.
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Corollary 1. For given l and b, the adaptiveness criterion in (P10) under the optimal terminal wealth derived from Problem

(P2) is

E½RðT9l,bÞ� ¼ E½RðT91,bÞ�þE½RðT9l,bÞ�RðT91,bÞ�

¼�ln gðTÞþ
1

2

g0Tþ1

g0

ðm2
yþs

2
yÞþðln l�ln yÞHðx1Þ�ln y½1�Hðx2Þ�

þ ln W ½Hðx2Þ�Hðx1Þ�þ ln gðTÞ½Hðx2Þ�Hðx1Þ�

�
1

2

g0Tþ1

g0

½Gð
ffiffiffiffiffi
x2
p
Þ�Gð

ffiffiffiffiffi
x1
p
ÞþGð�

ffiffiffiffiffi
x1
p
Þ�Gð�

ffiffiffiffiffi
x2
p
Þ�,

where

my ¼
y0þg0yT

g0Tþ1
, sy ¼

g0

ffiffiffi
T
p

g0Tþ1
, x1 ¼

�ln zþ ln gðTÞ

1

2

g0Tþ1

g0

, x2 ¼
�ln zþ ln gðTÞ

1

2

g0Tþ1

g0

HðxÞ ¼F
ffiffiffi
x
p
�my
sy

� �
�F

�
ffiffiffi
x
p
�my

sy

� �
,

GðxÞ ¼F
x�my
sy

� �
m2
y�2mysyf

x�my
sy

� �
þs2

y F
x�my
sy

� �
�

x�my
sy

f
x�my
sy

� �� �
,

and fð�Þ and Fð�Þ are the probability density function and the cumulative distribution function of the standard normal
distribution, respectively.

This corollary reveals the explicit relationships between the return outcome and the psychological determinants of the
investor’s rational behavior in our framework, which allows us to precisely obtain the optimal values of l and/or b as the
solution of the adaptation problem (P10). As a preliminary exercise, it is useful to visit the adaptation problem (P10) when
only belief bias alone is present. When there is no preference bias, i.e., l¼ 1, we have

E½RðT91,bÞ� ¼ �ln gðTÞþ
1

2

g0Tþ1

g0

ðm2
yþs

2
yÞ:

When l¼ 1, the solution of the problem (P10), bn, must satisfy

@E½RðT91,bÞ�

@b
¼

y
g0

ðmy�y0Þ ¼ 0:

Some simple algebras show that bn
¼ 0 (i.e., y0 ¼ y), which implies that optimism, or pessimism, should not arise on the

beliefs of loss-neutral investors. The result is consistent with Sandroni (2000), Blume and Easley (2006) and Yan (2008).

3.2. Properties of investor’s optimal behavior

We present in the following proposition explicit expressions for the investor’s optimal wealth and portfolio strategies
during the investment horizon, while placing its proof in the Appendix.

Proposition 2. For Problem (P2), the investor’s time-t optimal wealth is given by

WðtÞ ¼
1

yzðtÞ
F

d1ðzÞ
dðtÞ

� �
þ1�F

d2ðzÞ
dðtÞ

� �� �
þW e�rf ðT�tÞ F

d3ðzÞ
g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA�F d3ðzÞ

g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA

2
664

þF
d4ðzÞ

g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA�F d4ðzÞ

g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA
3
775þ l

yzðtÞ
F

d2ðzÞ
dðtÞ

 !
�F

d1ðzÞ
dðtÞ

 !" #
,

and the optimal fraction of his wealth invested in the stock is

pðtÞ ¼ 1

WðtÞs
ymðtÞ

yzðtÞ
F

d1ðzÞ
dðtÞ

� �
þ1�F

d2ðzÞ
dðtÞ

� �� ��
�

1

ydðtÞzðtÞ
g0

g0tþ1
f

d1ðzÞ
dðtÞ

� �
�f

d2ðzÞ
dðtÞ

� �� �

�
W e�rf ðT�tÞffiffiffiffiffiffiffiffiffi

T�t
p f

d3ðzÞ
dðtÞ

 !
�f

d3ðzÞ

dðtÞ

 !
þf

d4ðzÞ

dðtÞ

 !
�f

d4ðzÞ
dðtÞ

 !" #
þymðtÞ

l
yzðtÞ

F
d2ðzÞ
dðtÞ

 !
�F

d1ðzÞ
dðtÞ

 !" #

�
l

ydðtÞzðtÞ
g0

g0tþ1
f

d2ðzÞ
dðtÞ

 !
�f

d1ðzÞ
dðtÞ

 !" #)
,
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Fig. 1. The effects of g0 (a) and l (b) on optimal portfolio pðtÞ (Parameter values: W ¼W0 ¼ 1, rf¼0.0408, y¼ 0:3, s¼ 0:22, t¼0.5, T¼1, and b¼0): (a) the

effect of g0 (l¼ 1), (b) the effect of l (g0 ¼ 0:5Þ.
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where

d1ðxÞ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln gðTÞ�2 ln x

g0Tþ1

g0

vuuut �ymðtÞ, d2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln gðTÞ�2 ln x

g0Tþ1

g0

vuuut �ymðtÞ,

d3ðxÞ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln gðTÞ�2 ln x

g0Tþ1

g0

vuuut �
g0tþ1

g0Tþ1
ymðtÞ, d4ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln gðTÞ�2 ln x

g0Tþ1

g0

vuuut �
g0tþ1

g0Tþ1
ymðtÞ,

dðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0ðT�tÞ

ðg0tþ1Þðg0Tþ1Þ

s
, dðtÞ ¼ dðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0tþ1

g0Tþ1

s
:

Fig. 1 presents the effects of incomplete information, preference bias and belief bias on pðtÞ. Examining this figure
enables us to reveal the dependence of the investor’s behavior on the parameters g0, l, and b. Fig. 1a investigates the
effects of information incompleteness g0 on pðtÞ when there is neither preference bias nor belief bias (i.e., b¼ 0,l¼ 1). It is
clear from the figure that as g0 increases, the sensitivity of pðtÞ to the variation in ~BðtÞ also increases. This induces a greater
deviation of pðtÞ from the ‘‘objective’’ best strategy (i.e., which corresponds to the true parameter value and leads to the
highest expected return in the ex post sense),

pn ¼
m�rf

s2
,

and therefor causes a lower level of expected (objective) return.
Fig. 1b presents the effects of l on pðtÞ in the case of b¼0 and g0 ¼ 0:5. The wedges among the curves illustrate that

increasing l decreases the size of the optimal risky proportion pðtÞ, and produces a greater deviation from the loss-neutral
(LN) case (l¼ 1). Note that the effect of loss aversion observed in Fig. 1b and the effect of information incompleteness
observed in Fig. 1a can be opposite in some situations. A natural question then is whether loss aversion can be
advantageous for smoothing away the negative effect brought in by incomplete information?

Based on the patterns revealed in Fig. 1, Fig. 2 further investigates the effects of loss aversion on the optimal
asset allocation when b¼0. The figure illustrates that we may characterize three subregions in the ~BðtÞ space. In the
‘‘good-state’’ region ½ ~BðtÞZB� and the ‘‘bad-state’’ region ½ ~BðtÞoB�, the effect of loss aversion goes in the opposite direction
with the effect of information incompleteness, where loss aversion reduces the deviation from the investor’s optimal
strategy to pn.4 This effect makes the investor’s strategy fit pn better, and thus tends to increase the investor’s objective
expected return. We refer this beneficial effect as the desirable loss aversion effect. In the intermediate region [Br ~BðtÞoB],
the effect of loss aversion goes in the same direction with the effect of information incompleteness, where loss aversion
4 The optimal growth strategy pn is used as the benchmark for evaluating the relative performance of various strategies because it leads to the

highest (objective) expected return in the market.



Fig. 2. The effects of loss aversion and incomplete information when b¼0.
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magnifies the deviation between the investor’s optimal strategy and pn. This effect tends to decrease the investor’s
objective return on average. We refer this hazardous effect as the excessive loss aversion effect.

The final effect of loss aversion must be the net effect of these two opposing tendencies. In the complete-information
case with g0 ¼ 0, as the LN investor’s optimal strategy coincides with pn, there only exists the intermediate region, and
hence the excessive loss aversion effect. When g0 is positive, however, both the good-state and bad-state subregions (and
thus the desirable effect of loss aversion) emerge. By some calculations, we can further obtain5

B ¼�
y
g0

, B ¼ yt: ð9Þ

Consequently, as g0 increases, the bad-state subregion grows at the expense of the intermediate subregion, which implies
that a greater information incompleteness will both reduce the chance of the excessive loss aversion effect and enhance
the chance of the desirable loss aversion effect. As a consequence, although the excessive loss aversion effect dominates
when information is rather complete, the desirable loss aversion effect gradually takes over as information becomes
sparser. In this way, when the desirable loss aversion effect becomes prominent enough, we would expect that loss
aversion can finally offer a beneficial decision-making service. As such, incomplete information leaves ‘‘rooms’’ for loss
aversion to improve the investor’s decisions.

The above analysis should not be viewed as being specific to the particular settings of our model. In the literature,
Merton (1971) and Williams (1977) have shown that incomplete information creates a new state variable. As the true
stock return process is unaffected by this state variable, information incompleteness turns out to be equivalent to a source
of completely unpriced or unrewarded risks. By taking more precautions against losses, loss aversion then works more
effectively in dealing with unrewarded risks than rewarded risks. Specifically, its effect on unrewarded risks tends to
increase the actual expected value, while its effect on rewarded risks tends to decrease the actual expected value. Thus,
although the latter effect dominates when the source of unrewarded risks, information incompleteness, is negligible, the
former effect gradually takes over when the perceived information becomes sparser. Consequently, loss aversion, if
appropriate, can be well justified by incomplete information in the sense of both loss avoidance and value creation, and
hence may arise as a reasonable psychological response to the threat of information uncertainty.

On the other hand, this potential improvement caused by loss aversion could be further enhanced once the investor
further incorporates the belief bias (b) properly. Here, optimism (b40) is required as a ‘‘rosy view’’ leads investors to
pursue a higher risky position and therefor can counterbalance the underinvestment effects of loss aversion. In this way,
loss aversion and optimism, together, can actually improve the investor’s portfolio decisions in some incomplete-
information cases, and therefor could be viewed as the optimal responses to incomplete information.

4. Loss aversion, optimism, and expected return

We now present a systematic analysis of the adaptation problem (P10).6

4.1. Higher returns or psychological biases?

At first, we examine the two primary implications from Section 3: (1) When information is incomplete, optimism is
hazardous for LN investors, but may be beneficial for loss-averse investors; (2) Loss aversion is harmful when information
5 For the case of l¼ 1 and b¼0, we can obtain the investor’s optimal strategy as pðtÞ ¼ ðyþg0
~BðtÞÞ=½sðg0tþ1Þ�.

6 For the market where investors operate, we adopt the parameters estimated by Ang et al. (2005) based on U.S. equity returns from 1926 to 1998:

rf¼0.0408, y¼ 0:30, and s¼ 0:22. Our basic results are robust to the values of these parameters.
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Fig. 3. The actual expected return against l (Parameter values: W0 ¼ 1, rf¼0.0408, y¼ 0:3, s¼ 0:22, T¼1, and W ¼W0): (a) b¼0 and (b) b¼0.2.
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is roughly complete, but can be advantageous when information becomes sufficiently sparse. To address the issues, we
then examine the relationships between the actual expected return (E½RðTÞ�) and different parameters based on Corollary 1.

Fig. 3 plots the investor’s expected return as a function of l for three different levels of g0. Fig. 3a presents the investor’s
expected return in the case b¼0. Evidenced from the figure, the curve with g0 ¼ 0:1 is monotonically decreasing, while the
curves with g0 ¼ 0:3 and 0.5 are single-peaked. These results are consistent with the intuitions described above.

Fig. 3b further presents the expected return of an investor with b¼0.2, i.e., an optimistic case. All three curves in the
figure show a single peaked pattern with a peak around l¼ 1:3. We can see that loss aversion is the optimal preference
feature of this optimistic investor, even when information is rather complete.

Fig. 4 plots the investor’s expected return as a function of b for three different levels of g0. Fig. 4a presents the expected
returns of the LN investor (l¼ 1). The figure shows that all three curves reach their peaks at b¼0, which implies that
optimism (or pessimism) alone is useless for enhancing the expected return. That said, optimism (or pessimism) should
not arise in the belief of an LN investor, thus confirming the results in the end of Section 3.1.

Fig. 4b plots the expected return of a loss-averse investors (l¼ 2) against belief bias b, and shows a single-peaked
pattern with a peak around b¼0.5. It turns out that the optimal belief of a loss-averse investor is positively biased.

Taking together, we would expect that there exists a certain critical value g, and the condition

g04g ð10Þ

ensures that loss aversion can be advantageous for the investor. Meanwhile, consistent with the motto ‘‘Contraria sunt
Complementa’’ (opposites are complementary), loss aversion and optimism demonstrate to be complementary for making
good decisions.
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4.2. How do optimal psychological features change with incomplete information?

Our results up to this point have suggested that information incompleteness can make rooms for loss aversion and
optimism. The next step then is to characterize more precisely how optimal psychological biases relate to information
incompleteness.

Fig. 5 displays the relationships among l, b, and g0 obtained from solving the problem (P10). We can see that there exists
some critical level g in the figure, as indicated previously. We may use this level to classify the situations into two subsets.
Denote ðln,bn

Þ as the solution of the psychological adaptation problem (P10). In the subset g0rg, the unbiased alignment
ðln
¼ 1,bn

¼ 0Þ prevails. In the subset g04g where available information is not precise enough for the investor, (i) the
investor’s best attitudes are characterized by both loss aversion and optimism, i.e., ln41,bn40; and (ii) the investor’s best
attitudes become more loss-averse and more optimistic when the information becomes further sparser, i.e., both ln and bn

increase with g0. These results are consistent with the intuition we discussed previously, and demonstrate again the role of
incomplete information in determining loss aversion and optimism.

4.3. Comparative statics analysis

Now, we have reconciled two biases, loss aversion and optimism, with functional and adaptive arguments. How
sensitive are these results to alternative specifications? The investment problem in our model is determined by the
horizon parameter T, the equity risk premium parameter Dm¼ m�rf , and the volatility parameter s. We now examine their
effects on the endogenous ln.7

Fig. 6 displays the sensitivity analysis of ln to the parameter T, Dm, and s. In the figure, for every considered case, we
can clearly see that loss aversion emerges when g0 attains certain level g, and then grows when g0 further increases. This
invariant result highlights that our previous conclusion is robust to a wide range of market (or asset) specifications.

The figure also exhibits some new features in the region g04g. In Fig. 6a and b, the wedges among curves illustrate that
an increase in T, or an decrease in Dm, induces an increase in ln. That said, loss aversion tends to be more prominent for a
longer evaluation period, or a lower risk premium. Fig. 6c further shows that ln increases with s in the region g04g. In
other words, we would expect that loss aversion becomes more prominent in a more volatile situation.
7 The results about bn are similar.
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5. Discussion

We have established the relationships among loss aversion, optimism and incomplete information. These predictions
are generic in that they rely only on the most natural assumption in economics and finance, value maximization, and also
in that all built-in elements in the model (loss aversion, optimism and incomplete information) are prevalent phenomena
in individual decision making. In this sense, our results are applicable across investment setting types. Likewise, it is not
surprising that these relationships are also qualitatively well in line with two general tendencies of psychological bias
evolvement, which Hirshleifer (2001) summarized one as: ‘‘Many (though not all) of the cognitive biases are stronger for
individuals with low cognitive ability or skills than for those with high ability or skills,’’ and the other as: ‘‘People are likely
to be more prone to bias in valuing securities for which information is sparse.’’

Then it is useful to describe how our results relate to the behavioral finance literature in more details. On the empirical
side, we would want to be able to show that our bounded rationality approach can be useful for structuring analysis of the
observed anomalies in individual investor behavior. We then present a brief investigation by focusing on loss aversion. It is
well documented in the literature (see, e.g., Daniel et al., 2002; Barberis and Thaler, 2003; Barber and Odean, 2011) that,
across countries worldwide, individual investors tend to exhibit loss-averse behavior, e.g., the disposition effect.8 In a
recent overview of the stock trading behavior of individual investors, Barber and Odean (2011) further summarize several
general aspects of the disposition effect: it is most pronounced for financially unsophisticated investors or hard-to-value
stocks; meanwhile, trading experience tends to diminish it over time. Our model explains loss aversion as a feature related
to information incompleteness. Clearly, experience, sophistication, stock-level uncertainty, and so on, all directly
determine the extent of information incompleteness. These stylized facts of individual trading behavior are thus certainly
consistent with the simple mechanism invoked by our model. In this sense, the large body of empirical and experimental
evidence about the disposition effect seems less puzzling once we recognize the fact that incomplete information is all-
pervading in individual decision making.

The validity of our model for illuminating the financial literature on the disposition effect can be further confirmed by
investigating the link between loss aversion and the observed disposition effect in a rigorous model. For example, Yao and Li
(2011) formally demonstrate that loss aversion has a positive causal effect on the investor’s negative-feedback trading
propensity, which is consistent with the disposition effect, when prospect theory’s value function is used to cope with the
deviations of actual investor behavior from standard rationality assumptions. In that study, we also present an empirical work
on the disposition effect by calibrating the continuous-time portfolio choice model under prospect theory and incomplete
information to match the trading characteristics reported by Odean (1998).9 We find that by incorporating implied information
incompleteness (similar to implied volatility in option pricing), prospect theory is more ready to predict the disposition effect.
The results show that the portfolio model fits the data well. The calibration also produces reasonable levels of implied
information incompleteness, where g0 � 0:1 for a wide range of l’s values, and plausible relationships that the disposition
effect tends to be weaker when information becomes more precise, or the loss aversion coefficient decreases.

On the theoretical side, our results may prove valuable for integrating various financial theories. In the financial
literature, the concepts of incomplete information, loss aversion, and optimism are usually presented independently as
competing ways to explain some well-known financial anomalies (e.g., Brav and Heaton, 2002). By establishing their
relationships, this paper then takes a further step in the direction of integrating these concepts together, which is at the
heart of our growing understanding of how, and to what extent, rational and behavioral theories can be combined. For
example, the limits of arbitrage problem, which is due to incomplete information in the study of Shleifer and Vishny (1997),
could be further exacerbated if endogenous loss aversion is also considered.

A few final remarks are in order. First, some topics, as those often encountered in establishing an evolutionary rationale
in economics (e.g., Robson, 2002), remain to be explored. For example, how exactly the psychological adaptation process
operates in practice is not obvious as the information incompleteness perceived by individuals is largely unobservable.
Additional research about this question in greater details could prove necessary and beneficial.

Second, our results should not be exaggerated. We do not claim that the adaptive interpretation of bounded rationality
is descriptive of every conceivable behavior. But those adaptive psychological features are of more relevance for financial
and other economists because, e.g., the features are more likely to be engaged in asset pricing.

Third, there could be many contributing factors about loss aversion and optimism other than information incomplete-
ness. We do not intend to deny behavioral explanations based on individual irrationality. Rather, we argue that such
irrational explanations may not be always necessary. As long as we acknowledge that incomplete information is an
important determinant of individual investor behavior, the link between loss aversion (optimism) and investment
mistakes should not be held as a self-evident truth. Kahneman has emphasized in his Nobel address: ‘‘I am now quick to
reject any description of our work as demonstrating human irrationality.’’10 The work in this paper reinforces his argument
in the context of investment decisions.
8 This trading pattern suggests that investors are more prone to realizing gains than losses. Also, there is mounting evidence of short-term contrarian

behavior, buying after prices decrease and selling after prices increase.
9 The estimates in Odean (1998) are obtained based on the stock-trading behavior of 10,000 households with accounts at a large discount brokerage

firm.
10 See http://nobelprize.org/economics/laureates/2002 for Kahneman’s Nobel address.

http://nobelprize.org/economics/laureates/2002
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6. Conclusion

Based on Simon’s ‘‘scissors’’ analogy, this paper explicitly models how bounded rationality can contribute to the origin
and structure of loss aversion and optimism. We show that loss aversion and optimism can be beneficial in terms of
increasing the true mean growth rate of wealth accumulation when information is sparse. Rather than expressing loss
aversion and optimism as ‘‘reasoning errors relevant to economic decisions’’ (Conlisk, 1996), the results emphasize that
the psychological biases can be functional regarding our information-processing limitations. As such, for bounded rational
agents, decision-making under uncertainty may naturally occur in a way reflecting loss aversion and optimism. This
bounded-rationality mechanism offers an interesting way to link different theories together within the value-maximiza-
tion hypothesis, and hence may be a promising line of inquiry for our continued efforts to facilitate a systematic
accumulation of financial knowledge from different sources toward an internally consistent big picture.
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Appendix A
Proof of Proposition 1. We can solve the static problem by following the steps of the method implemented by Basak and
Shapiro (2001) and Berkelaar et al. (2004). Applying the Lagrangian method, problem ðP20Þ can be further written as

max
W Z0

UðWÞ�yzðTÞW ¼
ln W�ln W�yzðTÞW if WZW ,

lðln W�ln W Þ�yzðTÞW if WrW ,

(

where yZ0 is the Lagrangian multiplier.
For WZW , we can obtain the following local maximum:

W1 ¼

1

yzðTÞ
if zðTÞrz,

W if zðTÞ4z,

8><
>:

where z ¼ 1=ðyW Þ.
For WrW , we get the local maximum as

W2 ¼

W if zðTÞrz,

l
yzðTÞ

if zðTÞ4z,

8><
>:

where z ¼ l=ðyW Þ.
We then compare the local maxima, W1 and W2, to determine the global maximum. If

f ðzðTÞÞ ¼UðW1Þ�yzðTÞW1�½UðW2Þ�yzðTÞW2�Z0,

the global optimal solution is W1; otherwise, it is W2. For zrzðTÞrz, we have W1 ¼W2 ¼W ; so the optimal wealth in this
case is W .

By some calculations, we can derive the explicit expression of the optimal terminal wealth as follows:

WðTÞ ¼

1

yzðTÞ
if zðTÞoz,

W if zrzðTÞrz,

l
yzðTÞ

if zðTÞ4z:

8>>>>>><
>>>>>>:

ðA:1Þ

As zðTÞ 2 ½0,gðTÞ�, we can further simplify the optimal wealth expression (A.1) into a more compact formula. When
l=ðyW ÞZgðTÞ4W0=W , the optimal terminal wealth can be simplified to

WðTÞ ¼

1

yzðTÞ
if zðTÞoz,

W if zðTÞ4z:

8><
>: ðA:2Þ



J. Yao, D. Li / Journal of Economic Dynamics & Control 37 (2013) 18–3130
When W0=W ZgðTÞ, the optimal terminal wealth can be written as

WðTÞ ¼
1

yzðTÞ
, ðA:3Þ

where y¼ 1=W0.
Note that the formulation in (A.2) corresponds to the case of portfolio insurance, in which the terminal wealth is

confined to be above the reference level W and all unfavorable states are insured (see, e.g., Basak, 1995; Grossman and
Zhou, 1996). The formulation in (A.3) further reduces to the loss neutral, i.e., log return, case. In these two special cases,
there exists no direct effect of loss aversion on the investor’s choice. &

Proof of Corollary 1. It is clear from (8) that the investor’s (log) return is given as

RðT9l,b Þ ¼

�ln y�ln zðTÞ if�ln zðTÞ4 ln yþ ln W ,

ln W if�ln lþ ln yþ ln W r�ln zðTÞr ln yþ ln W ,

ln l�ln y�ln zðTÞ if�ln zðTÞo�ln lþ ln yþ ln W :

8><
>:

When l¼ 1, we have y¼W0 ¼ 1 and can hence write the return function as11

RðT91,bÞ ¼�ln zðTÞ:

Given the true value of m, we have

~BðTÞ �NðyT ,TÞ: ðA:4Þ

Based on (3) and (A.4), we can derive the objective distribution of ymðTÞ as follows:

ymðTÞ �N
y0þg0yT

g0Tþ1
,

g2
0T

ðg0Tþ1Þ2

 !
:

Note that this distribution is different from the subjective distribution of ymðTÞ. Some calculations then yield the
expression of the actual expected return of the investor’s optimal choice. &

Proof of Proposition 2. It is easy to show by Itô’s rule that zðtÞWðtÞ is a martingale with respect to the price filtration (see,
e.g., Lakner, 1998)

WðtÞ ¼ E
zðTÞ
zðtÞ

WðTÞ

� 				F S
t

�
: ðA:5Þ

We can rewrite Eq. (2) as

dymðtÞ ¼
g0

g0tþ1
dBðtÞ:

Then, by Itô lemma, we can obtain the subjective distribution of yðTÞ as

ymðTÞ �N ymðtÞ,
g2

0ðT�tÞ

ðg0tþ1Þðg0Tþ1Þ

� �
, ðA:6Þ

where Nðm,s2Þ denotes a normal distribution with mean m and variance s2. Substituting the above expression and the
terminal wealth distribution into (A.5), we can obtain the optimal wealth processes in Proposition 2.

Using Itô lemma again, we know that the stochastic term in dWðtÞ is

@WðtÞ

@ymðtÞ

g0

g0tþ1
dBðtÞ:

Comparing the above term with the stochastic term in (4), we obtain

pðtÞ ¼ 1

WðtÞs
g0

g0tþ1

@WðtÞ

@ymðtÞ
:

Substituting the optimal wealth processes into the above equation leads to the optimal strategies in Proposition 2.
For the two special cases in the Proof of Proposition 1, we can also get the corresponding results as follows. If

l=ðyW ÞZgðTÞ4W0=W , the time-t optimal wealth is given by

WðtÞ ¼
1

yzðtÞ
F

d1ðzÞ
dðtÞ

� �
þ1�F

d2ðzÞ
dðtÞ

� �� �
þW e�rf ðT�tÞ F

d4ðzÞ
g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA�F d3ðzÞ

g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA

2
664

3
775:
11 Lakner (1998) has obtained that the optimal terminal wealth of a log-utility investor is WðTÞ ¼W0=zðTÞ, and the corresponding optimal trading

strategy is pðtÞ ¼ ðm0�rf Þ=s2.
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The fraction of wealth invested in the stock is

pðtÞ ¼ 1

WðtÞs

8><
>:
ymðtÞ

yzðtÞ
F

d1ðzÞ
dðtÞ

� �
þ1�F

d2ðzÞ
dðtÞ

� �� �
�

1

ydðtÞzðtÞ
g0

g0tþ1
f

d1ðzÞ
dðtÞ

� �
�f

d2ðzÞ
dðtÞ

� �� �

�
Wffiffiffiffiffiffiffiffiffi
T�t
p e�rf ðT�tÞ f

d4ðzÞ
g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA�f d3ðzÞ

g0

g0Tþ1

ffiffiffiffiffiffiffiffiffi
T�t
p

0
BB@

1
CCA

2
664

3
775
9>>=
>>;:

If W0=W ZgðTÞ, the optimal wealth at time t is

WðtÞ ¼
1

yzðtÞ
,

and the optimal trading strategy is

pðtÞ ¼
mðtÞ�rf

s2
: &
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