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In this chapter, we consider specification, identification and estimation of simultaneous
equation models (SEM). For references, see Malinvaud (1980), Sargan (1988), Judge et.al.
(1985) and Handbook of Econometrics (1983).

1. Specification

1.1 The Model

We consider the model given by
y′tB + x′tC = u′t

for t = 1, . . . , n, where {yt} and {xt} are ℓ- and m-dimensional, respectively, which we
call endogenous and exogenous variables. The motivation for the distinction between {yt}
and {xt} is the same as in the models previously considered. The only difference here is
that we allow for the contemporaneous relationships among the endogenous variables. As
before, {ut} represent errors, which are assumed to be serially uncorrelated unless specified
otherwise, i.e., Eutu′s = Σ if t = s and 0 otherwise. We will often let

zt =

(
yt
xt

)
and A =

(
B
C

)

so that z′tA = y′tB + x′tC.

We may write the model in matrix form as

ZA = Y B +XC = U

where Z, Y,X and U are defined in the usual fashion. Assume
(a) B is nonsingular.
(b) X is of full column rank.
The assumption (a) is necessary for the model to be complete, and (b) is made as in standard
regression models. We assume that the distribution of Y is completely determined by its first
and second moments, which would really be the case under normality. All these assumptions
will be maintained throughout the chapter.

1.2 Identification

If we allow the parameters A = (B′, C ′)′ and Σ to be any (ℓ + m) × ℓ and ℓ × ℓ matrices
in the model presented above, then different sets of values of A’s and Σ’s may imply the
same distribution for Y . In this case, they are said to be observationally equivalent, and
the model is not identified. To avoid this problem of the lack of identification, we restrict
the parameter set by

R vecA = r and ΦvecΣ = φ

To make precise our subsequent exposition on identification, the following conventions will
be made:
(a) A structure is a specific value of (A,Σ), or of A if it is unnecessary to specify Σ.
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(b) A model is the set of structures satisfying restrictions of the form given above. It will
often be denoted by (R, r) or ((R, r), (Φ, φ)), depending upon whether only A or both A
and Σ are restricted.
(c) A structure in a model is identified if there is no other observationally equivalent
structure in the model. A model is identified if every structure in the model is identified.
For instance, a structure A0 is said to be in model (R, r) if R vecA0 = r. Similarly, (A0,Σ0)
is in model ((R, r), (Φ, φ)) if R vecA0 = r and ΦvecΣ0 = φ.

1.3 RF and SF Models

When the parameter set is restricted by the restrictions B = I, the model can be written
as

Y = XΠ+ V

Using our convention, the model may be specified by (R, r) with

R = Iℓ ⊗ (Iℓ, 0) and r = vec I

since B = (Iℓ, 0)A and vec (Iℓ, 0)A = (Iℓ⊗(Iℓ, 0)) vecA. The model (R0, r0) is called reduced
form (RF) and, in contrast, the models specified by all the other R’s are called structural
form (SF). The models in SF allow for contemporaneous relationships among the endogenous
variables as mentioned above, while those in RF do not. The latter are just multivariate
regression models that we studied earlier. A structure (A0,Σ0) with A0 = (B′

0, C
′
0)

′ in any
SF model has a unique observationally equivalent structure in the RF model since B0 is
assumed to be nonsingular. The structure (Π0,Ω0) (or, ((I,−Π′

0)
′,Ω0), more conformably

with our previous definition) in the RF model is given by

Π0 = −C0B
−1
0 and Ω0 = B−1′

0 Σ0B
−1
0

Finding a structure in the RF model that is observationally equivalent to a structure in a
SF model amounts to solving the model for Y .

1.4 Representation

Let
vecA = s− Sα

where α is the vector of “free” parameters in A, and S and s can be obtained from R and
r by

Rs = r and RS = 0

since R vecA = r. Using (Iℓ ⊗ Z) vecA = vecU , we may now write the model as

y∗ = Z∗α+ u

with
y∗ = (Iℓ ⊗ Z)s , Z∗ = (Iℓ ⊗ Z)S
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and u = vecU .

For the representation of the i-th equation, we let the i-th column ai of A be restricted
by

Riai = ri

and define Si and si by Risi = ri and RiSi = 0, similarly as above, so that ai = si − Siαi

with the free parameter αi. Then the i-th equation can be represented as

yi = Ziαi + ui

where yi = Zsi, Zi = ZSi and ui is the i-th column of U .

The restrictions on A are often composed exclusively of those for normalization and
exclusion, for which R becomes a matrix of zeros and ones. If this is the case,

Zi = (Yi, Xi)

where Yi and Xi represent ℓi-endogenous and mi-exogenous variables, respectively. More-
over, yi is simply the endogenous variable with normalization restriction. We have in this
case

y∗ =

 y1
...
yℓ

 , Z∗ =

 Z1

. . .

Zℓ

 , α =

 α1
...
αℓ


and the model is given in SUR form.

2. Identification

2.1 Characterization of Observational Equivalence

Since the distribution of Y is assumed to be completely determined by the first two moments,
two structures are observationally equivalent if they yield the same mean and variance for
Y . It can be deduced that

Lemma 1 Two structures (A1,Σ1) and (A2,Σ2) are observationally equivalent if and only
if

A2 = A1T and Σ2 = T ′Σ1T

for a nonsigular matrix T .

Proof Let A1 = (B′
1, C

′
1)

′ and A2 = (B′
2, C

′
2)

′. Notice that (A1,Σ1) and (A2,Σ2) are
observationally equivalent if and only if C1B

−1
1 = C2B

−1
2 and B−1′

1 Σ1B
−1
1 = B−1′

2 Σ2B
−1
2 .

If this condition holds, then A2 = A1T and Σ2 = T ′Σ1T with T = B−1
1 B2. Conversely,

if A2 = A1T and Σ2 = T ′Σ1T , then C2B
−1
2 = C1TT

−1B1 = C1B1 and B−1′
2 Σ2B

−1
2 =

B−1′
1 T−1′Σ2T

−1B−1
1 = B−1′

1 Σ1B
−1
1 , as was to be shown.

All the observationally equivalent systems of equations may therefore be generated by taking
independent linear combinations of the equations in a given system.
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2.2 First-Order Identification

Let a model be specified by the restrictions only on A and consequently denoted by (R, r).
Accordingly, structures are designated by the values on A only. Identification conditions
can now be easily deduced from Lemma 1.

Theorem 2 (Rank Condition) A necessary and sufficient condition for identification of
A0 in (R, r) is that

rankR(Iℓ ⊗A0) = ℓ2

i.e., R(Iℓ ⊗A0) must have full column rank.

Proof From Lemma 1, A0 is identified in (R, r) if and only if there is no A in (R, r) of
the form A0T with T ̸= I, or equivalently,

R vecA0T = R(Iℓ ⊗A0) vecT = r

has the unique solution T = I. The condition holds when and only when R(I⊗A0) has full
column rank.

The RF model is identified, since for R = Iℓ ⊗ (Iℓ, 0) and A0 = (Iℓ,−P ′
0)

′ we have R(Iℓ ⊗
A0) = Iℓ2 , and the rank condition is satisfied for all of its structures.

Let R be q × ℓ(ℓ+m), i.e., q be the number of restrictions. Since R(Iℓ ⊗ A0) is q × ℓ2,
it is obvious that

Corollary 3 (Order Condition) For identification of A0 in (R, r), it is necessary that

q ≥ ℓ2

If the order condition is satisfied, then we may normally expect any given structure to
be identified since the set of unidentified structures is a lower dimensional subset of the
parameter set. For this reason, we often say (incorrectly, but commonly) that model (R, r)
is identified when q ≥ ℓ2. It is said to be just identified (or exactly identified) if q = ℓ2, and
over identified if q > ℓ2. When q < ℓ2, it is called unidentified (or under identified).

2.3 Second-Order Identification

Now assume both A and Σ are restricted. It follows from Lemma 1 that (A0,Σ0) is identified
in ((R, r), (Φ, φ)) if and only if there is no (A,Σ) in ((R, r), (Φ, φ)) of the form A0T and
T ′Σ0T with T ̸= I. Or, equivalently, T = I must be the only solution for

R(Iℓ ⊗A0) vecT = r

ΦvecT ′Σ0T = φ

The second equation is quadratic in T , which leads us to look at a condition for local
identification instead of the global one. We define a structure (A0,Σ0) in ((R, r), (Φ, φ)) to
be locally identified if there is a neighborhood of (A0,Σ0) where that no other structure is
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observationally equivalent to (A0,Σ0). Of course, a locally identified structure may not be
identified (or, globally identified).

Define the restriction matrix Φ for Σ more precisely as follows: First we write the
restrictions as Φ∗vechΣ = φ, where “vech” vectorizes as “vec” nonredundant elements of
Σ. Then let Φ = Φ∗(D

′D)−1D′ with the duplication matrix D such that vecΣ = D vechΣ.
For Φ constructed as such, we have Φvec (·) = Φvec (·).

Theorem 4 A necessary and sufficient condition for local identification of (A0,Σ0) in
((R, r), (Φ, φ)) is that

rank

(
R(Iℓ ⊗A0)
Φ(Iℓ ⊗ Σ0)

)
= ℓ2

i.e., the matrix must be of full column rank.

Proof Clearly, (A0,Σ0) is locally identified if and only if T = I is the only solution to
the tangent plane at T = I of the equations introduced above. The first equation itself
represents the the tangent plane at any T , since it is linear. To get the tangent plane at
T = I for the second equation, we totally differentiate the equation, set it equal to zero,
and let T = I and dT = T − I. Consequently, we have

Φ(Iℓ ⊗ Σ0) vecT = φ

and the result follows directly.

The condition in the above theorem is only a necessary condition for (global) identification.
Notice also that, for the condition to hold, it is necessary that there must be at least ℓ2

restrictions on A and Σ together. We say that a model is just-, over- and un-identified
based on the number of restrictions, as in the first-order identification.

2.4 Identification of Sub-structures

Let a model (R, r) be given, and let

A = (A1, A2)

where A1 and A2 represent the parameters of the 1st and 2nd subsystems, which are as-
sumed to consist of ℓ1 and ℓ2 equations, respectively. We only consider restrictions imposed
exclusively on A1, which are written as

R1 vecA1 = r1

For A0 = (A0
1, A

0
2) in (R, r), it is said that the sub-structure A0

1 is identified if there is no
other observationally equivalent structure of A0 with the first sub-structure satisfying the
restriction. The sub-model (R1, r1) is said to be identified if the corresponding sub-structure
of any structure in model (R, r) is identified.
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Corollary 5 In the model given above, it is necessary and sufficient that

rankR1(Iℓ1 ⊗A0) = ℓ1ℓ

for A0
1 to be identified.

Proof A0
1 is identified if and only if there is no A such that A = A0T and A1 ̸= A0

1. Let
T = (T1, T2), where the partition is made conformably with A, so that A1 = A0T1. Then
the condition holds if and only if

R1 vecA0T1 = R1(Iℓ1 ⊗A0) vecT1 = r1

has the unique solution T1 = (Iℓ1 , 0)
′.

The implied order condition for identification of a sub-structure should be evident. A sub-
model is said to be just-, over- and un-identified accordingly. Notice that our result here is
directly applicable for a model with identities.

Suppose there are no restrictions across the two subsystems, and the restrictions on A2

are given by
R2 vecA2 = r2

so that R = diag(R1, R2) and r = (r′1, r
′
2)

′. Then it follows that A0 in (R, r) is identified
if and only if both A0

1 and A0
2 are identified. This is because R(Iℓ ⊗ A0) = diag(R1(Iℓ1 ⊗

A0), R2(Iℓ2 ⊗A0)) in this case.

If the result in Corollary 5 is applied to a single equation, the rank condition for iden-
tification of the i-th equation becomes

rank (RiA0) = ℓ

where Ri is the restriction matrix for the i-th equation, with the order condition

qi ≥ ℓ

if Ri is qi×ℓ. If we further concentrate on an equation with only normalization and exclusion
restrictions, then the order condition becomes m −mi ≥ ℓi i.e., must be excluded at least
as many exogenous variables as the number of endogenous variables in the right-hand side.
Notice that the number of restrictions for the i-th equation is 1+(ℓ−(ℓi+1))+(m−mi), each
term of which accounts for the restrictions for normalization and exclusions of endogenous
and exogenous variables.

The problems of the second-order identification of sub-structures can be formulated and
considered in essentially the same way that we investigate the first-order identification here.

2.5 Identification of Sub-structures with Zero-Covariance Restrictions

Consider the model ((R, r), (Φ, φ)), where (R, r) is composed of two separable restrictions
on A1 and A2 as explained above, and (Φ, φ) implies restrictions on

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
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given by
Σ12 = Σ21 = 0

In what follows, we use the same notation as in the previous section.

Corollary 6 Let A0
2 be identified in the model introduced above. It is necessary and suffi-

cient that
rankR1(Iℓ1 ⊗A0

1) = ℓ21

for A0
1 to be identified.

Proof Write an ℓ× ℓ matrix T as

T = (T1, T2) =

(
T11 T12

T21 T22

)
where the partitions are made conformably with A and Σ, and consider

R1(Iℓ1 ⊗A0) vecT1 = r1

R2(Iℓ2 ⊗A0) vecT2 = r2

T ′
1Σ0T2 = 0

which any admissible transformation T must satisfy. Since A0
2 is identified, T12 = 0 and

T22 = Iℓ2 must be the only solution to the second equation. However, this implies that
T21 = 0 from the third equation. The first equation can therefore be rewritten as

R1(Iℓ1 ⊗A0
1) vecT11 = r1

Clearly, A0
1 is identified if and only if T11 = Iℓ1 is the only solution to the above equation,

and the proof is complete.

The zero-covariance restrictions with an unidentified sub-structure would in general not
help identify the other sub-structure, as one may easily see in the proof.

With zero-covariance restrictions with the other identified sub-structure, a sub-structure
is identified whenever it is identified in the corresponding subsystem regarded as if it were
the complete system. The result in the previous subsection therefore applies as well. For
instance, if the first sub-subsystem of the first subsystem consisting of ℓ11 equations is mod-
elled with restrictions R11 vecA11 = r11, then a sub-sub-structure A0

11 of A0
1 = (A0

11, A
0
12) is

identified if and only if R11(Iℓ11 ⊗A0
1) has rank ℓ11ℓ1.

As an application, consider the so-called recursive model, which is characterized as: B
is upper triangular with one on the diagonal, and Σ is diagonal. We now show by induction
that the model is identified. Let us call the “i-th subsystem” the subsystem consisting of the
first i equations. First, the first subsystem is clearly identified with ℓ restrictions. Second,
suppose the (i−1)-th subsystem is identified. Then the i-th equation with normalization
restriction is identified in the i-th subsystem, due to the result in Corollary 7. However, the
i-th equation would then be identified in the system, since adding any linear combination
of the rest equations to the i-th equation would violate the restrictions imposed on the
equation. Consequently, the i-th subsystem is identified.
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2.6 Exercises

1. Consider the following SEM’s:

(A): y1t = γ1x1t + γ2x2t + u1t

y2t = βy1t + γ3x1t + u2t

(B):
y1t = βy2t + γxt + u1t

y2t = (1− β)y1t + γxt + u2t

(a) Discuss the identifiability of equations in Model (A). Consider, in particular, when
the true values of the parameters are β = γ1 = γ3 = 1 and γ2 = 0.

(b) Discuss the identifiability of Model (B). Consider when β = γ = 1.
(c) The second equation in Model (A) is not identified when γ1 = γ3 = 2, β = 1 and

γ2 = 0. Construct an observationally equivalent structure.

2. Let a system of simultaneous equations be given by

y1t = y2t − xt + u1t
y2t = −y1t + xt + u2t

and denote by A0 the corresponding structure.
(a) Define a model (R, r) in which A0 is identified.
(b) Consider the model (R, r) with

R =

 1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 , r =

 1
1
1


Show that the first equation is identified, while the second equation is not. Find an obser-
vationally equivalent system with the second equation different from the given system.

3. Consider the three-equation system

α11y1t + α21y2t + α31y3t + α41x1t + α51x2t + α61x3t = u1t

α12y1t + α22y2t + α32y3t + α42x1t + α52x2t + α62x3t = u2t

α13y1t + α23y2t + α33y3t + α43x1t + α53x2t + α63x3t = u3t

with var (ut) = Σ, ut = (u1t, u2t, u3t)
′, where

Σ =

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33


Suppose that the prior restrictions on coefficients are

α11 = α22 = α33 = 1 and α41 = α61 = α52 = α63 = 0

and the covariance restrictions are

σ12 = σ13 = 0

Examine the identification for each equation.
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3. Estimation by OLS and ILS

3.1 OLS and Simultaneous Equation Bias

Consider the i-the equation estimated by OLS, which yields

α̂i
OLS = (Z ′

iZi)
−1Z ′

iyi

The OLS estimate α̂i
OLS of αi is, in general, inconsistent, since

Z ′
iui
n

= S′
i

Z ′ui
n

P−→ G′
iσ

0
i ̸= 0

with Gi = (B−1
0 , 0)Si, where B0 is the true value of B and σ0

i is the i-th column of the
true value Σ0 of Σ. The result simply states that unless Si selects endogenous variables
uncorrelated with the errors the OLS estimator becomes inconsistent. The inconsistency is
due to the presence of endogenous variables in the right-hand side of the regression, and
the resulting bias is often referred to as the simultaneous equation bias.

3.2 Indirect Least Squares

We may obtain an estimate for the SF parameter A or its i-th column ai from a LS estimate
for the RF parameter Π using the relationship Π = −CB−1, which can be more conveniently
formulated in terms of

D = (Π, Im)

as DA = 0 and Dai = 0, or equivalently, as

(Iℓ ⊗D)(s− Sα) = 0

D(si − Siαi) = 0

The procedure is called indirect least squares (ILS).

Clearly, such procedure is possible only when

(Iℓ ⊗D)s ∈ R((Iℓ ⊗D)S)

Dsi ∈ R(DSi)

for a given value ofD. We may expect that the procedure yields a unique solution for α or αi

when the system or the equation is just identified. In such a case, the matrix Iℓ⊗D or DSi

becomes square. When underidentified, it generally yields multiple solutions. If a system
or an equation is overidentified, then the solution does not exist, unless Π is estimated with
the restrictions implied by the above conditions. With the restrictions, the RF model in
general becomes a multivariate regression model with nonlinearity in parameter.

Consider a system and an equation that are just identified. The ILS estimators are then
easily obtained from the above relationships with

D̂ = (Π̂, Im) = (X ′X)−1X ′Z
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where Π̂ = (X ′X)−1X ′Y is the OLS estimate for Π in the RF model. Since (Iℓ ⊗ D̂)S is a
square matrix that is nonsingular a.s., and Iℓ ⊗ D̂ = (Iℓ ⊗ (X ′X)−1)(Iℓ ⊗X ′)(Iℓ ⊗ Z), the
ILS estimator α̂ILS for α is given by

α̂ILS = ((Iℓ ⊗X ′)Z∗)
−1(Iℓ ⊗X ′)y∗

Moreover, D̂Si = (X ′X)−1X ′ZSi = (X ′X)−1X ′Zi is a square matrix and nonsingular a.s.,
and the ILS estimator α̂i

ILS for αi becomes

α̂i
ILS = (X ′Zi)

−1X ′yi

for the i-th equation.

4. IV Estimation

4.1 Instrumental Variables

As we have seen above, the simultaneous equation bias is due to the correlation between the
errors and the endogenous variables included in the right-hand side of the equation. One
obvious solution to correct the bias is to use the IV method. In a SEM, system exogenous
variables are the most natural candidate for the instrumental variables. More precisely, X
for a single equation and Iℓ⊗X for the entire system trivially satisfy the IV conditions (a),
(c) and (d) by the assumptions on X. To see when the IV condition (b) holds, define for
the true parameter value A0 = (B′

0, C
′
0)

′

D0 = (Π0, Im) with Π0 = −C0B
−1
0

conformably with the previous definition of D, and let a0i be the i-th column of A0. Notice
that

X ′Zi

n
=

X ′Z

n
Si

P−→ MD0Si

and
(Iℓ ⊗X)Z∗

n
=

(
Iℓ ⊗

XZ

n

)
S

P−→ (Iℓ ⊗MD0)S = (Iℓ ⊗M)(Iℓ ⊗D0)S

The following lemma tells us exactly when the set of exogenous variables becomes a
valid instrument.

Lemma 7 The matrix (Iℓ ⊗ D0)S is of full column rank if and only if A0 is identified.
Similarly, the matrix D0Si has full column rank if and only if a0i is identified.

Proof Notice that

N (R) = R(S) and R(Iℓ ⊗A0) = N (Iℓ ⊗D0)

since RS = 0 and (Iℓ ⊗D0)(Iℓ ⊗A0) = Iℓ ⊗D0A0 = 0, and therefore

N (R) ∩R(Iℓ ⊗A0) = N (Iℓ ⊗D0) ∩R(S)
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which consists only of 0 if and only if R(Iℓ ⊗A0) and (Iℓ ⊗D0)S are full column rank. The
proof for D0Si is completely analogous.

In sum, X for a single equation and Iℓ ⊗X for the system become valid instruments when
and only when the true structure A0 and the sub-structure a0i are identified.

4.2 Single Equation IV Estimation

Consider the IV estimation of the i-th equation on the assumption that the equation is
identified. The IV estimator for the i-th equation is given explicitly by

α̂i
IV = (Z ′

iPXZi)
−1Z ′

iPXyi

if var (ui) = σ2
i I as we assume here. Since it is just an IV estimator, all the results for the

IV estimator clearly apply. For instance, it is consistent, and its asymptotic distribution is
given by √

n (α̂i
IV − α0

i )
D−→ N (0, Vi)

where Vi =
(
0, σ2

i (SiD
′
0MD0Si)

−1
)
, which can be consistently estimated by

σ̂2
i

(
Z ′
iPXZi

n

)−1

Notice also that the ILS estimator is just the IV estimator for a just identified equation.

The IV estimator is called the two stage least squares (2SLS) estimator, if applied to an
equation with only zero-one restrictions. In this case, Zi = (Yi, Xi) and therefore α̂i

IV can
be viewed as the “two stage” LS estimator: Regress Yi on X to get the fitted value Ŷi in
the first stage, and in the second stage regress yi on Ẑi = (Ŷi, Xi). Using Ŷi instead of Yi
can be motivated as to “purge” endogeneity of Yi.

The IV estimator can be regarded as a member of a broader class of estimators defined
by

α̂i
κ = (Z ′

iQκZi)
−1Z ′

iQκyi

where
Qκ = κPX + (1− κ)I

called the k-class estimator for αi. It becomes the IV estimator for κ = 1, while κ = 0 yields
the OLS estimator. It is quite clear that any α̂i

κ with κ = 1+ op(1) is consistent. Moreover,
if κ = 1 + op(

1√
n
), then α̂i

κ has the same asymptotic distribution as the IV estimator.

4.3 System IV Estimation

Assume the system is identified. The instruments Iℓ⊗X and (Σ−1⊗In)(Iℓ⊗X) = Σ−1⊗X
are valid, and both IV-OLS and IV-GLS analogue estimations are applicable. However, the
two IV approaches yield the identical estimator, which is given by

α̂IV =
(
Z ′
∗(Σ̃

−1 ⊗ PX)Z∗
)−1

Z ′
∗(Σ̃

−1 ⊗ PX)y∗
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where Σ̃ is a consistent estimator for Σ, which can be obtained by applying single equation
IV method equation by equation and using their residuals. If the system IV method is
applied to a model with zero-one restrictions, then the resulting estimator is often called
the three stage least squares (3SLS) estimator. Since it involves one additional step for the
covariance matrix estimation using the 2SLS residuals, comes the name “three stage” LS.

As for the single equation IV, the general results for the IV estimator applies to the
system IV estimator considered here. It is consistent, and its asymptotic distribution is
given by √

n (α̂IV − α0)
D−→ N (0, V )

with V =
(
S′(Σ−1

0 ⊗D′
0MD0)S

)−1
, which can be consistently estimated by

(
Z ′
∗(Σ̃

−1 ⊗ PX)Z∗
n

)−1

We also define system k-class estimator given by

α̂κ =
(
Z ′
∗(Σ

−1 ⊗Qκ)Z∗
)−1

Z ′
∗(Σ

−1 ⊗Qκ)y∗

where Qκ is as defined in the previous subsection. When κ = 0, it is simply the SUR
estimator, while if κ = 1 then the resulting estimator is the system IV estimator that we
consider here. Clearly, any α̂κ with κ = 1+ op(1) is consistent, and with κ = 1+ op(

1√
n
) it

has the same asymptotic distribution as the system IV estimator.

5. ML Estimation

5.1 Full Information Maximum Likelihood

Consider the ML estimation of the entire system, called the full information maximum
likelihood (FIML) procedure. Upon noticing that the Jacobian of the transformation U =
Y B + XC is | det B|n, the density of Y can easily be deduced from that of U given in
Section 3.1. Ignoring the constant term, the loglikelihood function of A and Σ is given by

ℓ(A,Σ) = n log | detB| − n

2
log detΣ− 1

2
trΣ−1A′Z ′ZA

Moreover, since for any given A

Σ =
1

n
A′Z ′ZA

maximizes the likelihood function, we get the following concentrated loglikelihood function
of A:

ℓ(A) = n log | detB| − n

2
log det

1

n
A′Z ′ZA

ignoring the constant term again.
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We have

dℓ(A) = n trB−1dB − trΣ−1A′Z ′Z dA

= −trΣ−1A′Z ′XDdA

where D = (Π, Im) with Π = −CB−1 as before, since

nB−1dB = Σ−1A′Z ′ZAB−1(Iℓ, 0)dA and ZAB−1(Iℓ, 0) = (Y −XΠ, 0)

from which we may readily get the FOC’s for the maximization of ℓ(A).

Now let α̂FIML be the FIML estimator for α, and let Â, D̂ and Σ̂ be the corresponding
parameters evaluated with α̂FIML. Furthermore, we define

Ẑ = XD̂ = (XΠ̂, X)

Writing dℓ(A) = −(vecA)′(Σ−1⊗Z ′XD)(vec dA) and replacing vecA = s−Sα and vec dA =
−S dα, the FOC for α̂FIML becomes

S′(Σ̂−1 ⊗ Ẑ ′Z)(s− Sα̂FIML) = 0

We therefore have

α̂FIML =
(
Ẑ ′
∗(Σ̂

−1 ⊗ In)Z∗
)−1

Ẑ ′
∗(Σ̂

−1 ⊗ In)y∗

where Ẑ∗ = (Iℓ ⊗ Ẑ)S.

To compare with α̂FIML, we write the system IV estimator α̂IV as

α̂IV =
(
Z̃ ′
∗(Σ̃

−1 ⊗ In)Z∗
)−1

Z̃ ′
∗(Σ̃

−1 ⊗ In)y∗

where Z̃∗ = (Iℓ ⊗ Z̃)S with
Z̃ = PXZ = (XΠ̃, X)

Π̃ = (X ′X)−1X ′Y , and Σ̃ is the estimate of Σ based on single equation IV residuals. It
is now straightforward to see that α̂FIML and α̂IV are asymptotically equivalent. In finite
samples, the two may diverge by the amount that Ẑ and Z̃, and Σ̂ and Σ̃ differ.

5.2 Limited Information Maximum Likelihood

We now consider the ML procedure for a subsystem on the presumption that there are
no overidentifying restrictions elsewhere. The procedure is called the limited information
maximum likelihood (LIML). For a given structure (A,Σ), partition A and Σ as in Sections
2.4 and 2.5. Then

Proposition 8 Suppose there are no overidentifying restrictions in the second subsystem.
Then the concentrated likelihood function of (A1,Σ11) for the first subsystem is given by

ℓ(A1,Σ11) =
n

2
log det

1

n
A′

1Z
′(I − PX)ZA1 −

n

2
log detΣ11 −

1

2
trΣ−1

11 A
′
1Z

′ZA1

ignoring the constant term.
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Proof We assume that Σ is of the form

Σ =

(
Σ11 0
0 I

)

This causes no loss in generality because for any structure (A,Σ), we may consider (A∗,Σ∗)
given by A∗ = AT and Σ∗ = T ′ΣT with

T =

(
I −Σ

−1/2
22·1 Σ−1

11 Σ12

0 Σ
−1/2
22·1

)

where Σ22·1 = Σ22 − Σ21Σ
−1
11 Σ12. The parameter in the first subsystem of (A∗,Σ∗) is

(A1,Σ11), as in that of (A,Σ), and Σ∗ is of the form given above. Moreover, (A,Σ) and
(A∗,Σ∗) are observationally equivalent, and therefore yield the same density for Y .

The likelihood function of A and Σ is then given by

n log |detB| − n

2
log detΣ11 −

1

2
trΣ−1

11 A
′
1Z

′ZA1 −
1

2
trA′

2Z
′ZA2

To get the likelihood function concentrated on (A1,Σ11), we maximize for given A1

n log | detB| − 1

2
trA′

2Z
′ZA2

with respect to A2, or maximize

n log |detB| − 1

2
trB′

2Y
′(I − PX)Y B2

with respect toB2, since for a givenB2 the maximizer of C2 is given by C2 = (X ′X)−1X ′Y B2.
The FOC for this maximization problem is

tr
(
nJB−1 −B′

2Y
′(I − PX)Y

)
dB2

where J = (0, I). The FOC’s are

1

n
B′

2Y
′(I − PX)Y B1 = 0 and

1

n
B′

2Y
′(I − PX)Y B2 = I

and notice that

n log | detB| =
n

2
log det

1

n
B′Y ′(I − PX)Y B + const

=
n

2
log det

1

n
B′

1Y
′(I − PX)Y B1 + const

and B′
1Y

′(I − PX)Y B1 = A′
1Z

′(I − PX)ZA1 to get the stated result.

The loglikelihood function further concentrated to A1 is then given by

ℓ(A1) =
n

2
log det

1

n
A′

1Z
′(I − PX)ZA1 −

n

2
log det

1

n
A′

1Z
′ZA1
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since Σ11 = A′
1Z

′ZA1/n maximizes the likelihood for any given A1.

For the i-th equation, we may simply consider

κ =
a′iZ

′Zai
a′iZ

′(I − PX)Zai

which, if minimized with respect to αi for ai = si − Siαi, yields the LIML estimator α̂i
LIML

for αi. The ratio consists of two estimates for the variance of the i-th equation error, and
α̂i
LIML may be viewed as the value of αi which minimizes the ratio of two variance estimates.

For this reason, the LIML is often referred to the method of least variance ratio.

Redefine Z := (yi, Zi) and ai := (1,−α′
i)
′. Under this formulation, the minimum κ∗ of

κ and the minimizer a∗i of ai are the smallest eigenvalue and the corresponding eigenvector
(normalized to have the unit first entry), respectively, of Z ′Z with respect to Z ′(I −PX)Z.
For given κ∗, a

∗
i is defined by

(Z ′Z − κ∗Z
′(I − PX)Z)a∗i = (Z ′Qκ∗Z)a∗i = 0

where Qκ is as defined before, and α̂i
LIML is obtained from a∗i by Z ′

iQκ∗(yi −Ziα̂
i
LIML) = 0.

We have
α̂i
LIML = (Z ′

iQκ∗Zi)
−1Z ′

iQκ∗yi

which defines the LIML estimator as a k-class estimator.

The interpretation of α̂i
LIML as a k-class estimator is very useful to derive its asymptotic

properties. It is indeed not difficult to show that

κ∗ = 1 +Op

(
1

n

)
since

κ∗ − 1 ≤ a0′i Z
′PXZa0i

a0′i Z
′(I − PX)Za0i

≤ u′iX(X ′X)−1X ′ui
u′iui − u′iX(X ′X)−1X ′ui

The LIML estimator is therefore asymptotically equivalent to the single equation IV esti-
mator.

Moreover, recall that we have

PX(yi − Ziα̂
i
IV) = 0

for the just-identified equation. Noticing that PX = Qκ with κ = 1 and κ ≥ 1, we may
conclude that κ∗ = 1 in this case. This, however, implies that

α̂i
LIML = α̂i

IV

for the just-identified equation.



17

5.3 Exercises

1. Let a SEM be given by

y1t = α11y2t + α12x1t + u1t

y2t = α21x1t + α22x2t + u2t

and answer the following questions.
(a) Compare 2SLS, 3SLS, LIML and FIML estimators for the parameters α11 and α12 in
the first equation.
(b) Now suppose α21 = 0. How would your answer to (a) change?

2. Consider a SEM given by

y1t = βy2t + u1t

y2t = γ1x1t + γ2x2t + u2t

with the sample moment matrix

y1 y2 x1 x2

y1 10 2 3 1
y2 2 5 1 1
x1 3 1 2 1
x2 1 1 1 1

Answer the following questions.
(a) Compute 2SLS, 3SLS, LIML and FIML estimates for β.
(b) Suppose the covariance matrix of u1t and u2t is

Σ =

(
σ2 σ2

σ2 2σ2

)

Find the FIML estimates of β, γ1 and γ2.


