Part III

Simultaneous Equation Models

Yoosoon Chang
Department of Economics
Indiana University
and
Joon Y. Park
Department of Economics
Indiana University
and
Department of Economics
Sungkyunkwan University

January 2012
© 2012 by Yoosoon Chang \& Joon Y. Park All rights reserved.

In this chapter, we consider specification, identification and estimation of simultaneous equation models (SEM). For references, see Malinvaud (1980), Sargan (1988), Judge et.al. (1985) and Handbook of Econometrics (1983).

1. Specification

1.1 The Model

We consider the model given by

$$
y_{t}^{\prime} B+x_{t}^{\prime} C=u_{t}^{\prime}
$$

for $t=1, \ldots, n$, where $\left\{y_{t}\right\}$ and $\left\{x_{t}\right\}$ are ℓ - and m-dimensional, respectively, which we call endogenous and exogenous variables. The motivation for the distinction between $\left\{y_{t}\right\}$ and $\left\{x_{t}\right\}$ is the same as in the models previously considered. The only difference here is that we allow for the contemporaneous relationships among the endogenous variables. As before, $\left\{u_{t}\right\}$ represent errors, which are assumed to be serially uncorrelated unless specified otherwise, i.e., $\mathcal{E} u_{t} u_{s}^{\prime}=\Sigma$ if $t=s$ and 0 otherwise. We will often let

$$
z_{t}=\binom{y_{t}}{x_{t}} \quad \text { and } \quad A=\binom{B}{C}
$$

so that $z_{t}^{\prime} A=y_{t}^{\prime} B+x_{t}^{\prime} C$.
We may write the model in matrix form as

$$
Z A=Y B+X C=U
$$

where Z, Y, X and U are defined in the usual fashion. Assume
(a) B is nonsingular.
(b) X is of full column rank.

The assumption (a) is necessary for the model to be complete, and (b) is made as in standard regression models. We assume that the distribution of Y is completely determined by its first and second moments, which would really be the case under normality. All these assumptions will be maintained throughout the chapter.

1.2 Identification

If we allow the parameters $A=\left(B^{\prime}, C^{\prime}\right)^{\prime}$ and Σ to be any $(\ell+m) \times \ell$ and $\ell \times \ell$ matrices in the model presented above, then different sets of values of A 's and Σ 's may imply the same distribution for Y. In this case, they are said to be observationally equivalent, and the model is not identified. To avoid this problem of the lack of identification, we restrict the parameter set by

$$
R \overline{\mathrm{vec}} A=r \quad \text { and } \quad \Phi \overline{\mathrm{vec}} \Sigma=\varphi
$$

To make precise our subsequent exposition on identification, the following conventions will be made:
(a) A structure is a specific value of (A, Σ), or of A if it is unnecessary to specify Σ.
(b) A model is the set of structures satisfying restrictions of the form given above. It will often be denoted by (R, r) or $((R, r),(\Phi, \varphi)$), depending upon whether only A or both A and Σ are restricted.
(c) A structure in a model is identified if there is no other observationally equivalent structure in the model. A model is identified if every structure in the model is identified. For instance, a structure A_{0} is said to be in model (R, r) if $R \overline{\operatorname{vec}} A_{0}=r$. Similarly, $\left(A_{0}, \Sigma_{0}\right)$ is in model $((R, r),(\Phi, \varphi))$ if $R \overline{\mathrm{vec}} A_{0}=r$ and $\Phi \overline{\mathrm{vec}} \Sigma_{0}=\varphi$.

1.3 RF and SF Models

When the parameter set is restricted by the restrictions $B=I$, the model can be written as

$$
Y=X \Pi+V
$$

Using our convention, the model may be specified by (R, r) with

$$
R=I_{\ell} \otimes\left(I_{\ell}, 0\right) \quad \text { and } \quad r=\operatorname{vec} I
$$

since $B=\left(I_{\ell}, 0\right) A$ and $\overline{\mathrm{vec}}\left(I_{\ell}, 0\right) A=\left(I_{\ell} \otimes\left(I_{\ell}, 0\right)\right) \overline{\mathrm{vec}} A$. The model $\left(R_{0}, r_{0}\right)$ is called reduced form (RF) and, in contrast, the models specified by all the other R 's are called structural form (SF). The models in SF allow for contemporaneous relationships among the endogenous variables as mentioned above, while those in RF do not. The latter are just multivariate regression models that we studied earlier. A structure $\left(A_{0}, \Sigma_{0}\right)$ with $A_{0}=\left(B_{0}^{\prime}, C_{0}^{\prime}\right)^{\prime}$ in any SF model has a unique observationally equivalent structure in the RF model since B_{0} is assumed to be nonsingular. The structure $\left(\Pi_{0}, \Omega_{0}\right)$ (or, $\left(\left(I,-\Pi_{0}^{\prime}\right)^{\prime}, \Omega_{0}\right)$, more conformably with our previous definition) in the RF model is given by

$$
\Pi_{0}=-C_{0} B_{0}^{-1} \quad \text { and } \quad \Omega_{0}=B_{0}^{-1 \prime} \Sigma_{0} B_{0}^{-1}
$$

Finding a structure in the RF model that is observationally equivalent to a structure in a SF model amounts to solving the model for Y.

1.4 Representation

Let

$$
\overline{\mathrm{vec}} A=s-S \alpha
$$

where α is the vector of "free" parameters in A, and S and s can be obtained from R and r by

$$
R s=r \quad \text { and } \quad R S=0
$$

since $R \overline{\mathrm{vec}} A=r$. Using $\left(I_{\ell} \otimes Z\right) \overline{\mathrm{vec}} A=\overline{\mathrm{vec}} U$, we may now write the model as

$$
y_{*}=Z_{*} \alpha+u
$$

with

$$
y_{*}=\left(I_{\ell} \otimes Z\right) s, \quad Z_{*}=\left(I_{\ell} \otimes Z\right) S
$$

and $u=\overline{\operatorname{vec}} U$.
For the representation of the i-th equation, we let the i-th column a_{i} of A be restricted by

$$
R_{i} a_{i}=r_{i}
$$

and define S_{i} and s_{i} by $R_{i} s_{i}=r_{i}$ and $R_{i} S_{i}=0$, similarly as above, so that $a_{i}=s_{i}-S_{i} \alpha_{i}$ with the free parameter α_{i}. Then the i-th equation can be represented as

$$
y_{i}=Z_{i} \alpha_{i}+u_{i}
$$

where $y_{i}=Z s_{i}, Z_{i}=Z S_{i}$ and u_{i} is the i-th column of U.
The restrictions on A are often composed exclusively of those for normalization and exclusion, for which R becomes a matrix of zeros and ones. If this is the case,

$$
Z_{i}=\left(Y_{i}, X_{i}\right)
$$

where Y_{i} and X_{i} represent ℓ_{i}-endogenous and m_{i}-exogenous variables, respectively. Moreover, y_{i} is simply the endogenous variable with normalization restriction. We have in this case

$$
y_{*}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{\ell}
\end{array}\right), \quad Z_{*}=\left(\begin{array}{ccc}
Z_{1} & & \\
& \ddots & \\
& & Z_{\ell}
\end{array}\right), \alpha=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{\ell}
\end{array}\right)
$$

and the model is given in SUR form.

2. Identification

2.1 Characterization of Observational Equivalence

Since the distribution of Y is assumed to be completely determined by the first two moments, two structures are observationally equivalent if they yield the same mean and variance for Y. It can be deduced that

Lemma 1 Two structures $\left(A_{1}, \Sigma_{1}\right)$ and $\left(A_{2}, \Sigma_{2}\right)$ are observationally equivalent if and only if

$$
A_{2}=A_{1} T \quad \text { and } \quad \Sigma_{2}=T^{\prime} \Sigma_{1} T
$$

for a nonsigular matrix T.
Proof Let $A_{1}=\left(B_{1}^{\prime}, C_{1}^{\prime}\right)^{\prime}$ and $A_{2}=\left(B_{2}^{\prime}, C_{2}^{\prime}\right)^{\prime}$. Notice that $\left(A_{1}, \Sigma_{1}\right)$ and $\left(A_{2}, \Sigma_{2}\right)$ are observationally equivalent if and only if $C_{1} B_{1}^{-1}=C_{2} B_{2}^{-1}$ and $B_{1}^{-1 \prime} \Sigma_{1} B_{1}^{-1}=B_{2}^{-1 \prime} \Sigma_{2} B_{2}^{-1}$. If this condition holds, then $A_{2}=A_{1} T$ and $\Sigma_{2}=T^{\prime} \Sigma_{1} T$ with $T=B_{1}^{-1} B_{2}$. Conversely, if $A_{2}=A_{1} T$ and $\Sigma_{2}=T^{\prime} \Sigma_{1} T$, then $C_{2} B_{2}^{-1}=C_{1} T T^{-1} B_{1}=C_{1} B_{1}$ and $B_{2}^{-1 \prime} \Sigma_{2} B_{2}^{-1}=$ $B_{1}^{-1 /} T^{-1 /} \Sigma_{2} T^{-1} B_{1}^{-1}=B_{1}^{-1 \prime} \Sigma_{1} B_{1}^{-1}$, as was to be shown.

All the observationally equivalent systems of equations may therefore be generated by taking independent linear combinations of the equations in a given system.

2.2 First-Order Identification

Let a model be specified by the restrictions only on A and consequently denoted by (R, r). Accordingly, structures are designated by the values on A only. Identification conditions can now be easily deduced from Lemma 1.

Theorem 2 (Rank Condition) A necessary and sufficient condition for identification of A_{0} in (R, r) is that

$$
\operatorname{rank} R\left(I_{\ell} \otimes A_{0}\right)=\ell^{2}
$$

i.e., $R\left(I_{\ell} \otimes A_{0}\right)$ must have full column rank.

Proof From Lemma 1, A_{0} is identified in (R, r) if and only if there is no A in (R, r) of the form $A_{0} T$ with $T \neq I$, or equivalently,

$$
R \overline{\mathrm{vec}} A_{0} T=R\left(I_{\ell} \otimes A_{0}\right) \overline{\mathrm{vec}} T=r
$$

has the unique solution $T=I$. The condition holds when and only when $R\left(I \otimes A_{0}\right)$ has full column rank.

The RF model is identified, since for $R=I_{\ell} \otimes\left(I_{\ell}, 0\right)$ and $A_{0}=\left(I_{\ell},-P_{0}^{\prime}\right)^{\prime}$ we have $R\left(I_{\ell} \otimes\right.$ $\left.A_{0}\right)=I_{\ell^{2}}$, and the rank condition is satisfied for all of its structures.

Let R be $q \times \ell(\ell+m)$, i.e., q be the number of restrictions. Since $R\left(I_{\ell} \otimes A_{0}\right)$ is $q \times \ell^{2}$, it is obvious that

Corollary 3 (Order Condition) For identification of A_{0} in (R, r), it is necessary that

$$
q \geq \ell^{2}
$$

If the order condition is satisfied, then we may normally expect any given structure to be identified since the set of unidentified structures is a lower dimensional subset of the parameter set. For this reason, we often say (incorrectly, but commonly) that model (R, r) is identified when $q \geq \ell^{2}$. It is said to be just identified (or exactly identified) if $q=\ell^{2}$, and over identified if $q>\ell^{2}$. When $q<\ell^{2}$, it is called unidentified (or under identified).

2.3 Second-Order Identification

Now assume both A and Σ are restricted. It follows from Lemma 1 that $\left(A_{0}, \Sigma_{0}\right)$ is identified in $((R, r),(\Phi, \varphi))$ if and only if there is no (A, Σ) in $((R, r),(\Phi, \varphi))$ of the form $A_{0} T$ and $T^{\prime} \Sigma_{0} T$ with $T \neq I$. Or, equivalently, $T=I$ must be the only solution for

$$
\begin{aligned}
R\left(I_{\ell} \otimes A_{0}\right) \overline{\mathrm{vec}} T & =r \\
\Phi \overline{\mathrm{vec}} T^{\prime} \Sigma_{0} T & =\varphi
\end{aligned}
$$

The second equation is quadratic in T, which leads us to look at a condition for local identification instead of the global one. We define a structure $\left(A_{0}, \Sigma_{0}\right)$ in $((R, r),(\Phi, \varphi))$ to be locally identified if there is a neighborhood of $\left(A_{0}, \Sigma_{0}\right)$ where that no other structure is
observationally equivalent to $\left(A_{0}, \Sigma_{0}\right)$. Of course, a locally identified structure may not be identified (or, globally identified).

Define the restriction matrix Φ for Σ more precisely as follows: First we write the restrictions as $\Phi_{*} \operatorname{vech} \Sigma=\varphi$, where "vech" vectorizes as "vec" nonredundant elements of Σ. Then let $\Phi=\Phi_{*}\left(D^{\prime} D\right)^{-1} D^{\prime}$ with the duplication matrix D such that vec $\Sigma=D$ vech Σ. For Φ constructed as such, we have $\Phi \operatorname{vec}(\cdot)=\Phi \overline{\mathrm{vec}}(\cdot)$.

Theorem $4 A$ necessary and sufficient condition for local identification of $\left(A_{0}, \Sigma_{0}\right)$ in $((R, r),(\Phi, \varphi))$ is that

$$
\operatorname{rank}\binom{R\left(I_{\ell} \otimes A_{0}\right)}{\Phi\left(I_{\ell} \otimes \Sigma_{0}\right)}=\ell^{2}
$$

i.e., the matrix must be of full column rank.

Proof Clearly, $\left(A_{0}, \Sigma_{0}\right)$ is locally identified if and only if $T=I$ is the only solution to the tangent plane at $T=I$ of the equations introduced above. The first equation itself represents the the tangent plane at any T, since it is linear. To get the tangent plane at $T=I$ for the second equation, we totally differentiate the equation, set it equal to zero, and let $T=I$ and $d T=T-I$. Consequently, we have

$$
\Phi\left(I_{\ell} \otimes \Sigma_{0}\right) \overline{\operatorname{vec}} T=\varphi
$$

and the result follows directly.
The condition in the above theorem is only a necessary condition for (global) identification. Notice also that, for the condition to hold, it is necessary that there must be at least ℓ^{2} restrictions on A and Σ together. We say that a model is just-, over- and un-identified based on the number of restrictions, as in the first-order identification.

2.4 Identification of Sub-structures

Let a model (R, r) be given, and let

$$
A=\left(A_{1}, A_{2}\right)
$$

where A_{1} and A_{2} represent the parameters of the 1 st and 2 nd subsystems, which are assumed to consist of ℓ_{1} and ℓ_{2} equations, respectively. We only consider restrictions imposed exclusively on A_{1}, which are written as

$$
R_{1} \overline{\mathrm{vec}} A_{1}=r_{1}
$$

For $A_{0}=\left(A_{1}^{0}, A_{2}^{0}\right)$ in (R, r), it is said that the sub-structure A_{1}^{0} is identified if there is no other observationally equivalent structure of A_{0} with the first sub-structure satisfying the restriction. The sub-model $\left(R_{1}, r_{1}\right)$ is said to be identified if the corresponding sub-structure of any structure in model (R, r) is identified.

Corollary 5 In the model given above, it is necessary and sufficient that

$$
\operatorname{rank} R_{1}\left(I_{\ell_{1}} \otimes A_{0}\right)=\ell_{1} \ell
$$

for A_{1}^{0} to be identified.
Proof A_{1}^{0} is identified if and only if there is no A such that $A=A_{0} T$ and $A_{1} \neq A_{1}^{0}$. Let $T=\left(T_{1}, T_{2}\right)$, where the partition is made conformably with A, so that $A_{1}=A_{0} T_{1}$. Then the condition holds if and only if

$$
R_{1} \overline{\operatorname{vec}} A_{0} T_{1}=R_{1}\left(I_{\ell_{1}} \otimes A_{0}\right) \overline{\operatorname{vec}} T_{1}=r_{1}
$$

has the unique solution $T_{1}=\left(I_{\ell_{1}}, 0\right)^{\prime}$.
The implied order condition for identification of a sub-structure should be evident. A submodel is said to be just-, over- and un-identified accordingly. Notice that our result here is directly applicable for a model with identities.

Suppose there are no restrictions across the two subsystems, and the restrictions on A_{2} are given by

$$
R_{2} \overline{\mathrm{vec}} A_{2}=r_{2}
$$

so that $R=\operatorname{diag}\left(R_{1}, R_{2}\right)$ and $r=\left(r_{1}^{\prime}, r_{2}^{\prime}\right)^{\prime}$. Then it follows that A_{0} in (R, r) is identified if and only if both A_{1}^{0} and A_{2}^{0} are identified. This is because $R\left(I_{\ell} \otimes A_{0}\right)=\operatorname{diag}\left(R_{1}\left(I_{\ell_{1}} \otimes\right.\right.$ $\left.\left.A_{0}\right), R_{2}\left(I_{\ell_{2}} \otimes A_{0}\right)\right)$ in this case.

If the result in Corollary 5 is applied to a single equation, the rank condition for identification of the i-th equation becomes

$$
\operatorname{rank}\left(R_{i} A_{0}\right)=\ell
$$

where R_{i} is the restriction matrix for the i-th equation, with the order condition

$$
q_{i} \geq \ell
$$

if R_{i} is $q_{i} \times \ell$. If we further concentrate on an equation with only normalization and exclusion restrictions, then the order condition becomes $m-m_{i} \geq \ell_{i}$ i.e., must be excluded at least as many exogenous variables as the number of endogenous variables in the right-hand side. Notice that the number of restrictions for the i-th equation is $1+\left(\ell-\left(\ell_{i}+1\right)\right)+\left(m-m_{i}\right)$, each term of which accounts for the restrictions for normalization and exclusions of endogenous and exogenous variables.

The problems of the second-order identification of sub-structures can be formulated and considered in essentially the same way that we investigate the first-order identification here.

2.5 Identification of Sub-structures with Zero-Covariance Restrictions

Consider the model $((R, r),(\Phi, \varphi))$, where (R, r) is composed of two separable restrictions on A_{1} and A_{2} as explained above, and (Φ, φ) implies restrictions on

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

given by

$$
\Sigma_{12}=\Sigma_{21}=0
$$

In what follows, we use the same notation as in the previous section.
Corollary 6 Let A_{2}^{0} be identified in the model introduced above. It is necessary and sufficient that

$$
\operatorname{rank} R_{1}\left(I_{\ell_{1}} \otimes A_{1}^{0}\right)=\ell_{1}^{2}
$$

for A_{1}^{0} to be identified.
Proof Write an $\ell \times \ell$ matrix T as

$$
T=\left(T_{1}, T_{2}\right)=\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right)
$$

where the partitions are made conformably with A and Σ, and consider

$$
\begin{aligned}
R_{1}\left(I_{\ell_{1}} \otimes A_{0}\right) \overline{\operatorname{vec}} T_{1} & =r_{1} \\
R_{2}\left(I_{\ell_{2}} \otimes A_{0}\right) \overline{\operatorname{vec}} T_{2} & =r_{2} \\
T_{1}^{\prime} \Sigma_{0} T_{2} & =0
\end{aligned}
$$

which any admissible transformation T must satisfy. Since A_{2}^{0} is identified, $T_{12}=0$ and $T_{22}=I_{\ell_{2}}$ must be the only solution to the second equation. However, this implies that $T_{21}=0$ from the third equation. The first equation can therefore be rewritten as

$$
R_{1}\left(I_{\ell_{1}} \otimes A_{1}^{0}\right) \overline{\operatorname{vec}} T_{11}=r_{1}
$$

Clearly, A_{1}^{0} is identified if and only if $T_{11}=I_{\ell_{1}}$ is the only solution to the above equation, and the proof is complete.

The zero-covariance restrictions with an unidentified sub-structure would in general not help identify the other sub-structure, as one may easily see in the proof.

With zero-covariance restrictions with the other identified sub-structure, a sub-structure is identified whenever it is identified in the corresponding subsystem regarded as if it were the complete system. The result in the previous subsection therefore applies as well. For instance, if the first sub-subsystem of the first subsystem consisting of ℓ_{11} equations is modelled with restrictions $R_{11} \overline{\mathrm{vec}} A_{11}=r_{11}$, then a sub-sub-structure A_{11}^{0} of $A_{1}^{0}=\left(A_{11}^{0}, A_{12}^{0}\right)$ is identified if and only if $R_{11}\left(I_{\ell_{11}} \otimes A_{1}^{0}\right)$ has rank $\ell_{11} \ell_{1}$.

As an application, consider the so-called recursive model, which is characterized as: B is upper triangular with one on the diagonal, and Σ is diagonal. We now show by induction that the model is identified. Let us call the " i-th subsystem" the subsystem consisting of the first i equations. First, the first subsystem is clearly identified with ℓ restrictions. Second, suppose the $(i-1)$-th subsystem is identified. Then the i-th equation with normalization restriction is identified in the i-th subsystem, due to the result in Corollary 7. However, the i-th equation would then be identified in the system, since adding any linear combination of the rest equations to the i-th equation would violate the restrictions imposed on the equation. Consequently, the i-th subsystem is identified.

2.6 Exercises

1. Consider the following SEM's:
(A):

$$
\begin{aligned}
y_{1 t} & =\gamma_{1} x_{1 t}+\gamma_{2} x_{2 t}+u_{1 t} \\
y_{2 t} & =\beta y_{1 t}+\gamma_{3} x_{1 t}+u_{2 t} \\
y_{1 t} & =\beta y_{2 t}+\gamma x_{t}+u_{1 t} \\
y_{2 t} & =(1-\beta) y_{1 t}+\gamma x_{t}+u_{2 t}
\end{aligned}
$$

(a) Discuss the identifiability of equations in Model (A). Consider, in particular, when the true values of the parameters are $\beta=\gamma_{1}=\gamma_{3}=1$ and $\gamma_{2}=0$.
(b) Discuss the identifiability of Model (B). Consider when $\beta=\gamma=1$.
(c) The second equation in Model (A) is not identified when $\gamma_{1}=\gamma_{3}=2, \beta=1$ and $\gamma_{2}=0$. Construct an observationally equivalent structure.
2. Let a system of simultaneous equations be given by

$$
\begin{aligned}
& y_{1 t}=y_{2 t}-x_{t}+u_{1 t} \\
& y_{2 t}=-y_{1 t}+x_{t}+u_{2 t}
\end{aligned}
$$

and denote by A_{0} the corresponding structure.
(a) Define a model (R, r) in which A_{0} is identified.
(b) Consider the model (R, r) with

$$
R=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), \quad r=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Show that the first equation is identified, while the second equation is not. Find an observationally equivalent system with the second equation different from the given system.
3. Consider the three-equation system

$$
\begin{aligned}
& \alpha_{11} y_{1 t}+\alpha_{21} y_{2 t}+\alpha_{31} y_{3 t}+\alpha_{41} x_{1 t}+\alpha_{51} x_{2 t}+\alpha_{61} x_{3 t}=u_{1 t} \\
& \alpha_{12} y_{1 t}+\alpha_{22} y_{2 t}+\alpha_{32} y_{3 t}+\alpha_{42} x_{1 t}+\alpha_{52} x_{2 t}+\alpha_{62} x_{3 t}=u_{2 t} \\
& \alpha_{13} y_{1 t}+\alpha_{23} y_{2 t}+\alpha_{33} y_{3 t}+\alpha_{43} x_{1 t}+\alpha_{53} x_{2 t}+\alpha_{63} x_{3 t}=u_{3 t}
\end{aligned}
$$

with $\operatorname{var}\left(u_{t}\right)=\Sigma, u_{t}=\left(u_{1 t}, u_{2 t}, u_{3 t}\right)^{\prime}$, where

$$
\Sigma=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right)
$$

Suppose that the prior restrictions on coefficients are

$$
\alpha_{11}=\alpha_{22}=\alpha_{33}=1 \quad \text { and } \quad \alpha_{41}=\alpha_{61}=\alpha_{52}=\alpha_{63}=0
$$

and the covariance restrictions are

$$
\sigma_{12}=\sigma_{13}=0
$$

Examine the identification for each equation.

3. Estimation by OLS and ILS

3.1 OLS and Simultaneous Equation Bias

Consider the i-the equation estimated by OLS, which yields

$$
\hat{\alpha}_{\mathrm{OLS}}^{i}=\left(Z_{i}^{\prime} Z_{i}\right)^{-1} Z_{i}^{\prime} y_{i}
$$

The OLS estimate $\hat{\alpha}_{\mathrm{OLS}}^{i}$ of α_{i} is, in general, inconsistent, since

$$
\frac{Z_{i}^{\prime} u_{i}}{n}=S_{i}^{\prime} \frac{Z^{\prime} u_{i}}{n} \xrightarrow{\mathcal{P}} G_{i}^{\prime} \sigma_{i}^{0} \neq 0
$$

with $G_{i}=\left(B_{0}^{-1}, 0\right) S_{i}$, where B_{0} is the true value of B and σ_{i}^{0} is the i-th column of the true value Σ_{0} of Σ. The result simply states that unless S_{i} selects endogenous variables uncorrelated with the errors the OLS estimator becomes inconsistent. The inconsistency is due to the presence of endogenous variables in the right-hand side of the regression, and the resulting bias is often referred to as the simultaneous equation bias.

3.2 Indirect Least Squares

We may obtain an estimate for the SF parameter A or its i-th column a_{i} from a LS estimate for the RF parameter Π using the relationship $\Pi=-C B^{-1}$, which can be more conveniently formulated in terms of

$$
D=\left(\Pi, I_{m}\right)
$$

as $D A=0$ and $D a_{i}=0$, or equivalently, as

$$
\begin{aligned}
\left(I_{\ell} \otimes D\right)(s-S \alpha) & =0 \\
D\left(s_{i}-S_{i} \alpha_{i}\right) & =0
\end{aligned}
$$

The procedure is called indirect least squares (ILS).
Clearly, such procedure is possible only when

$$
\begin{aligned}
\left(I_{\ell} \otimes D\right) s & \in \mathcal{R}\left(\left(I_{\ell} \otimes D\right) S\right) \\
D s_{i} & \in \mathcal{R}\left(D S_{i}\right)
\end{aligned}
$$

for a given value of D. We may expect that the procedure yields a unique solution for α or α_{i} when the system or the equation is just identified. In such a case, the matrix $I_{\ell} \otimes D$ or $D S_{i}$ becomes square. When underidentified, it generally yields multiple solutions. If a system or an equation is overidentified, then the solution does not exist, unless Π is estimated with the restrictions implied by the above conditions. With the restrictions, the RF model in general becomes a multivariate regression model with nonlinearity in parameter.

Consider a system and an equation that are just identified. The ILS estimators are then easily obtained from the above relationships with

$$
\hat{D}=\left(\hat{\Pi}, I_{m}\right)=\left(X^{\prime} X\right)^{-1} X^{\prime} Z
$$

where $\hat{\Pi}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ is the OLS estimate for Π in the RF model. Since $\left(I_{\ell} \otimes \hat{D}\right) S$ is a square matrix that is nonsingular a.s., and $I_{\ell} \otimes \hat{D}=\left(I_{\ell} \otimes\left(X^{\prime} X\right)^{-1}\right)\left(I_{\ell} \otimes X^{\prime}\right)\left(I_{\ell} \otimes Z\right)$, the ILS estimator $\hat{\alpha}_{\text {ILS }}$ for α is given by

$$
\hat{\alpha}_{\mathrm{ILS}}=\left(\left(I_{\ell} \otimes X^{\prime}\right) Z_{*}\right)^{-1}\left(I_{\ell} \otimes X^{\prime}\right) y_{*}
$$

Moreover, $\hat{D} S_{i}=\left(X^{\prime} X\right)^{-1} X^{\prime} Z S_{i}=\left(X^{\prime} X\right)^{-1} X^{\prime} Z_{i}$ is a square matrix and nonsingular a.s., and the ILS estimator $\hat{\alpha}_{\mathrm{ILS}}^{i}$ for α_{i} becomes

$$
\hat{\alpha}_{\mathrm{ILS}}^{i}=\left(X^{\prime} Z_{i}\right)^{-1} X^{\prime} y_{i}
$$

for the i-th equation.

4. IV Estimation

4.1 Instrumental Variables

As we have seen above, the simultaneous equation bias is due to the correlation between the errors and the endogenous variables included in the right-hand side of the equation. One obvious solution to correct the bias is to use the IV method. In a SEM, system exogenous variables are the most natural candidate for the instrumental variables. More precisely, X for a single equation and $I_{\ell} \otimes X$ for the entire system trivially satisfy the IV conditions (a), (c) and (d) by the assumptions on X. To see when the IV condition (b) holds, define for the true parameter value $A_{0}=\left(B_{0}^{\prime}, C_{0}^{\prime}\right)^{\prime}$

$$
D_{0}=\left(\Pi_{0}, I_{m}\right) \quad \text { with } \quad \Pi_{0}=-C_{0} B_{0}^{-1}
$$

conformably with the previous definition of D, and let a_{i}^{0} be the i-th column of A_{0}. Notice that

$$
\frac{X^{\prime} Z_{i}}{n}=\frac{X^{\prime} Z}{n} S_{i} \xrightarrow{\mathcal{P}} M D_{0} S_{i}
$$

and

$$
\frac{\left(I_{\ell} \otimes X\right) Z_{*}}{n}=\left(I_{\ell} \otimes \frac{X Z}{n}\right) S \xrightarrow{\mathcal{P}}\left(I_{\ell} \otimes M D_{0}\right) S=\left(I_{\ell} \otimes M\right)\left(I_{\ell} \otimes D_{0}\right) S
$$

The following lemma tells us exactly when the set of exogenous variables becomes a valid instrument.

Lemma 7 The matrix $\left(I_{\ell} \otimes D_{0}\right) S$ is of full column rank if and only if A_{0} is identified. Similarly, the matrix $D_{0} S_{i}$ has full column rank if and only if a_{i}^{0} is identified.

Proof Notice that

$$
\mathcal{N}(R)=\mathcal{R}(S) \quad \text { and } \quad \mathcal{R}\left(I_{\ell} \otimes A_{0}\right)=\mathcal{N}\left(I_{\ell} \otimes D_{0}\right)
$$

since $R S=0$ and $\left(I_{\ell} \otimes D_{0}\right)\left(I_{\ell} \otimes A_{0}\right)=I_{\ell} \otimes D_{0} A_{0}=0$, and therefore

$$
\mathcal{N}(R) \cap \mathcal{R}\left(I_{\ell} \otimes A_{0}\right)=\mathcal{N}\left(I_{\ell} \otimes D_{0}\right) \cap \mathcal{R}(S)
$$

which consists only of 0 if and only if $R\left(I_{\ell} \otimes A_{0}\right)$ and $\left(I_{\ell} \otimes D_{0}\right) S$ are full column rank. The proof for $D_{0} S_{i}$ is completely analogous.

In sum, X for a single equation and $I_{\ell} \otimes X$ for the system become valid instruments when and only when the true structure A_{0} and the sub-structure a_{i}^{0} are identified.

4.2 Single Equation IV Estimation

Consider the IV estimation of the i-th equation on the assumption that the equation is identified. The IV estimator for the i-th equation is given explicitly by

$$
\hat{\alpha}_{\mathrm{IV}}^{i}=\left(Z_{i}^{\prime} P_{X} Z_{i}\right)^{-1} Z_{i}^{\prime} P_{X} y_{i}
$$

if $\operatorname{var}\left(u_{i}\right)=\sigma_{i}^{2} I$ as we assume here. Since it is just an IV estimator, all the results for the IV estimator clearly apply. For instance, it is consistent, and its asymptotic distribution is given by

$$
\sqrt{n}\left(\hat{\alpha}_{\mathrm{IV}}^{i}-\alpha_{i}^{0}\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, V_{i}\right)
$$

where $V_{i}=\left(0, \sigma_{i}^{2}\left(S_{i} D_{0}^{\prime} M D_{0} S_{i}\right)^{-1}\right)$, which can be consistently estimated by

$$
\hat{\sigma}_{i}^{2}\left(\frac{Z_{i}^{\prime} P_{X} Z_{i}}{n}\right)^{-1}
$$

Notice also that the ILS estimator is just the IV estimator for a just identified equation.
The IV estimator is called the two stage least squares (2SLS) estimator, if applied to an equation with only zero-one restrictions. In this case, $Z_{i}=\left(Y_{i}, X_{i}\right)$ and therefore $\hat{\alpha}_{\mathrm{IV}}^{i}$ can be viewed as the "two stage" LS estimator: Regress Y_{i} on X to get the fitted value \hat{Y}_{i} in the first stage, and in the second stage regress y_{i} on $\hat{Z}_{i}=\left(\hat{Y}_{i}, X_{i}\right)$. Using \hat{Y}_{i} instead of Y_{i} can be motivated as to "purge" endogeneity of Y_{i}.

The IV estimator can be regarded as a member of a broader class of estimators defined by

$$
\hat{\alpha}_{\kappa}^{i}=\left(Z_{i}^{\prime} Q_{\kappa} Z_{i}\right)^{-1} Z_{i}^{\prime} Q_{\kappa} y_{i}
$$

where

$$
Q_{\kappa}=\kappa P_{X}+(1-\kappa) I
$$

called the k-class estimator for α_{i}. It becomes the IV estimator for $\kappa=1$, while $\kappa=0$ yields the OLS estimator. It is quite clear that any $\hat{\alpha}_{\kappa}^{i}$ with $\kappa=1+o_{p}(1)$ is consistent. Moreover, if $\kappa=1+o_{p}\left(\frac{1}{\sqrt{n}}\right)$, then $\hat{\alpha}_{\kappa}^{i}$ has the same asymptotic distribution as the IV estimator.

4.3 System IV Estimation

Assume the system is identified. The instruments $I_{\ell} \otimes X$ and $\left(\Sigma^{-1} \otimes I_{n}\right)\left(I_{\ell} \otimes X\right)=\Sigma^{-1} \otimes X$ are valid, and both IV-OLS and IV-GLS analogue estimations are applicable. However, the two IV approaches yield the identical estimator, which is given by

$$
\hat{\alpha}_{\mathrm{IV}}=\left(Z_{*}^{\prime}\left(\tilde{\Sigma}^{-1} \otimes P_{X}\right) Z_{*}\right)^{-1} Z_{*}^{\prime}\left(\tilde{\Sigma}^{-1} \otimes P_{X}\right) y_{*}
$$

where $\tilde{\Sigma}$ is a consistent estimator for Σ, which can be obtained by applying single equation IV method equation by equation and using their residuals. If the system IV method is applied to a model with zero-one restrictions, then the resulting estimator is often called the three stage least squares (3SLS) estimator. Since it involves one additional step for the covariance matrix estimation using the 2SLS residuals, comes the name "three stage" LS.

As for the single equation IV, the general results for the IV estimator applies to the system IV estimator considered here. It is consistent, and its asymptotic distribution is given by

$$
\sqrt{n}\left(\hat{\alpha}_{\mathrm{IV}}-\alpha_{0}\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, V)
$$

with $V=\left(S^{\prime}\left(\Sigma_{0}^{-1} \otimes D_{0}^{\prime} M D_{0}\right) S\right)^{-1}$, which can be consistently estimated by

$$
\left(\frac{Z_{*}^{\prime}\left(\tilde{\Sigma}^{-1} \otimes P_{X}\right) Z_{*}}{n}\right)^{-1}
$$

We also define system k-class estimator given by

$$
\hat{\alpha}_{\kappa}=\left(Z_{*}^{\prime}\left(\Sigma^{-1} \otimes Q_{\kappa}\right) Z_{*}\right)^{-1} Z_{*}^{\prime}\left(\Sigma^{-1} \otimes Q_{\kappa}\right) y_{*}
$$

where Q_{κ} is as defined in the previous subsection. When $\kappa=0$, it is simply the SUR estimator, while if $\kappa=1$ then the resulting estimator is the system IV estimator that we consider here. Clearly, any $\hat{\alpha}_{\kappa}$ with $\kappa=1+o_{p}(1)$ is consistent, and with $\kappa=1+o_{p}\left(\frac{1}{\sqrt{n}}\right)$ it has the same asymptotic distribution as the system IV estimator.

5. ML Estimation

5.1 Full Information Maximum Likelihood

Consider the ML estimation of the entire system, called the full information maximum likelihood (FIML) procedure. Upon noticing that the Jacobian of the transformation $U=$ $Y B+X C$ is $|\operatorname{det} B|^{n}$, the density of Y can easily be deduced from that of U given in Section 3.1. Ignoring the constant term, the loglikelihood function of A and Σ is given by

$$
\ell(A, \Sigma)=n \log |\operatorname{det} B|-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{1}{2} \operatorname{tr} \Sigma^{-1} A^{\prime} Z^{\prime} Z A
$$

Moreover, since for any given A

$$
\Sigma=\frac{1}{n} A^{\prime} Z^{\prime} Z A
$$

maximizes the likelihood function, we get the following concentrated loglikelihood function of A :

$$
\ell(A)=n \log |\operatorname{det} B|-\frac{n}{2} \log \operatorname{det} \frac{1}{n} A^{\prime} Z^{\prime} Z A
$$

ignoring the constant term again.

We have

$$
\begin{aligned}
d \ell(A) & =n \operatorname{tr} B^{-1} d B-\operatorname{tr} \Sigma^{-1} A^{\prime} Z^{\prime} Z d A \\
& =-\operatorname{tr} \Sigma^{-1} A^{\prime} Z^{\prime} X D d A
\end{aligned}
$$

where $D=\left(\Pi, I_{m}\right)$ with $\Pi=-C B^{-1}$ as before, since

$$
n B^{-1} d B=\Sigma^{-1} A^{\prime} Z^{\prime} Z A B^{-1}\left(I_{\ell}, 0\right) d A \quad \text { and } \quad Z A B^{-1}\left(I_{\ell}, 0\right)=(Y-X \Pi, 0)
$$

from which we may readily get the FOC's for the maximization of $\ell(A)$.
Now let $\hat{\alpha}_{\text {FIML }}$ be the FIML estimator for α, and let \hat{A}, \hat{D} and $\hat{\Sigma}$ be the corresponding parameters evaluated with $\hat{\alpha}_{\text {FIML }}$. Furthermore, we define

$$
\hat{Z}=X \hat{D}=(X \hat{\Pi}, X)
$$

Writing $d \ell(A)=-(\overline{\mathrm{vec}} A)^{\prime}\left(\Sigma^{-1} \otimes Z^{\prime} X D\right)(\overline{\mathrm{vec}} d A)$ and replacing $\overline{\mathrm{vec}} A=s-S \alpha$ and $\overline{\mathrm{vec}} d A=$ $-S d \alpha$, the FOC for $\hat{\alpha}_{\text {FIML }}$ becomes

$$
S^{\prime}\left(\hat{\Sigma}^{-1} \otimes \hat{Z}^{\prime} Z\right)\left(s-S \hat{\alpha}_{\mathrm{FIML}}\right)=0
$$

We therefore have

$$
\hat{\alpha}_{\mathrm{FIML}}=\left(\hat{Z}_{*}^{\prime}\left(\hat{\Sigma}^{-1} \otimes I_{n}\right) Z_{*}\right)^{-1} \hat{Z}_{*}^{\prime}\left(\hat{\Sigma}^{-1} \otimes I_{n}\right) y_{*}
$$

where $\hat{Z}_{*}=\left(I_{\ell} \otimes \hat{Z}\right) S$.
To compare with $\hat{\alpha}_{\text {FIML }}$, we write the system IV estimator $\hat{\alpha}_{\text {IV }}$ as

$$
\hat{\alpha}_{I V}=\left(\tilde{Z}_{*}^{\prime}\left(\tilde{\Sigma}^{-1} \otimes I_{n}\right) Z_{*}\right)^{-1} \tilde{Z}_{*}^{\prime}\left(\tilde{\Sigma}^{-1} \otimes I_{n}\right) y_{*}
$$

where $\tilde{Z}_{*}=\left(I_{\ell} \otimes \tilde{Z}\right) S$ with

$$
\tilde{Z}=P_{X} Z=(X \tilde{\Pi}, X)
$$

$\tilde{\Pi}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$, and $\tilde{\Sigma}$ is the estimate of Σ based on single equation IV residuals. It is now straightforward to see that $\hat{\alpha}_{\text {FIML }}$ and $\hat{\alpha}_{\text {IV }}$ are asymptotically equivalent. In finite samples, the two may diverge by the amount that \hat{Z} and \tilde{Z}, and $\hat{\Sigma}$ and $\tilde{\Sigma}$ differ.

5.2 Limited Information Maximum Likelihood

We now consider the ML procedure for a subsystem on the presumption that there are no overidentifying restrictions elsewhere. The procedure is called the limited information maximum likelihood (LIML). For a given structure (A, Σ), partition A and Σ as in Sections 2.4 and 2.5. Then

Proposition 8 Suppose there are no overidentifying restrictions in the second subsystem. Then the concentrated likelihood function of $\left(A_{1}, \Sigma_{11}\right)$ for the first subsystem is given by

$$
\ell\left(A_{1}, \Sigma_{11}\right)=\frac{n}{2} \log \operatorname{det} \frac{1}{n} A_{1}^{\prime} Z^{\prime}\left(I-P_{X}\right) Z A_{1}-\frac{n}{2} \log \operatorname{det} \Sigma_{11}-\frac{1}{2} \operatorname{tr} \Sigma_{11}^{-1} A_{1}^{\prime} Z^{\prime} Z A_{1}
$$

ignoring the constant term.

Proof We assume that Σ is of the form

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{11} & 0 \\
0 & \mathrm{I}
\end{array}\right)
$$

This causes no loss in generality because for any structure (A, Σ), we may consider $\left(A_{*}, \Sigma_{*}\right)$ given by $A_{*}=A T$ and $\Sigma_{*}=T^{\prime} \Sigma T$ with

$$
T=\left(\begin{array}{cc}
\mathrm{I} & -\Sigma_{22 \cdot 1}^{-1 / 2} \Sigma_{11}^{-1} \Sigma_{12} \\
0 & \Sigma_{22 \cdot 1}^{-1 / 2}
\end{array}\right)
$$

where $\Sigma_{22 \cdot 1}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$. The parameter in the first subsystem of $\left(A_{*}, \Sigma_{*}\right)$ is $\left(A_{1}, \Sigma_{11}\right)$, as in that of (A, Σ), and Σ_{*} is of the form given above. Moreover, (A, Σ) and $\left(A_{*}, \Sigma_{*}\right)$ are observationally equivalent, and therefore yield the same density for Y.

The likelihood function of A and Σ is then given by

$$
n \log |\operatorname{det} B|-\frac{n}{2} \log \operatorname{det} \Sigma_{11}-\frac{1}{2} \operatorname{tr} \Sigma_{11}^{-1} A_{1}^{\prime} Z^{\prime} Z A_{1}-\frac{1}{2} \operatorname{tr} A_{2}^{\prime} Z^{\prime} Z A_{2}
$$

To get the likelihood function concentrated on $\left(A_{1}, \Sigma_{11}\right)$, we maximize for given A_{1}

$$
n \log |\operatorname{det} B|-\frac{1}{2} \operatorname{tr} A_{2}^{\prime} Z^{\prime} Z A_{2}
$$

with respect to A_{2}, or maximize

$$
n \log |\operatorname{det} B|-\frac{1}{2} \operatorname{tr} B_{2}^{\prime} Y^{\prime}\left(I-P_{X}\right) Y B_{2}
$$

with respect to B_{2}, since for a given B_{2} the maximizer of C_{2} is given by $C_{2}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y B_{2}$. The FOC for this maximization problem is

$$
\operatorname{tr}\left(n J B^{-1}-B_{2}^{\prime} Y^{\prime}\left(I-P_{X}\right) Y\right) d B_{2}
$$

where $J=(0, I)$. The FOC's are

$$
\frac{1}{n} B_{2}^{\prime} Y^{\prime}\left(I-P_{X}\right) Y B_{1}=0 \quad \text { and } \quad \frac{1}{n} B_{2}^{\prime} Y^{\prime}\left(I-P_{X}\right) Y B_{2}=I
$$

and notice that

$$
\begin{aligned}
n \log |\operatorname{det} B| & =\frac{n}{2} \log \operatorname{det} \frac{1}{n} B^{\prime} Y^{\prime}\left(I-P_{X}\right) Y B+\text { const } \\
& =\frac{n}{2} \log \operatorname{det} \frac{1}{n} B_{1}^{\prime} Y^{\prime}\left(I-P_{X}\right) Y B_{1}+\text { const }
\end{aligned}
$$

and $B_{1}^{\prime} Y^{\prime}\left(I-P_{X}\right) Y B_{1}=A_{1}^{\prime} Z^{\prime}\left(I-P_{X}\right) Z A_{1}$ to get the stated result.
The loglikelihood function further concentrated to A_{1} is then given by

$$
\ell\left(A_{1}\right)=\frac{n}{2} \log \operatorname{det} \frac{1}{n} A_{1}^{\prime} Z^{\prime}\left(I-P_{X}\right) Z A_{1}-\frac{n}{2} \log \operatorname{det} \frac{1}{n} A_{1}^{\prime} Z^{\prime} Z A_{1}
$$

since $\Sigma_{11}=A_{1}^{\prime} Z^{\prime} Z A_{1} / n$ maximizes the likelihood for any given A_{1}.
For the i-th equation, we may simply consider

$$
\kappa=\frac{a_{i}^{\prime} Z^{\prime} Z a_{i}}{a_{i}^{\prime} Z^{\prime}\left(I-P_{X}\right) Z a_{i}}
$$

which, if minimized with respect to α_{i} for $a_{i}=s_{i}-S_{i} \alpha_{i}$, yields the LIML estimator $\hat{\alpha}_{\text {LIML }}^{i}$ for α_{i}. The ratio consists of two estimates for the variance of the i-th equation error, and $\hat{\alpha}_{\text {LIML }}^{i}$ may be viewed as the value of α_{i} which minimizes the ratio of two variance estimates. For this reason, the LIML is often referred to the method of least variance ratio.

Redefine $Z:=\left(y_{i}, Z_{i}\right)$ and $a_{i}:=\left(1,-\alpha_{i}^{\prime}\right)^{\prime}$. Under this formulation, the minimum κ_{*} of κ and the minimizer a_{i}^{*} of a_{i} are the smallest eigenvalue and the corresponding eigenvector (normalized to have the unit first entry), respectively, of $Z^{\prime} Z$ with respect to $Z^{\prime}\left(I-P_{X}\right) Z$. For given κ_{*}, a_{i}^{*} is defined by

$$
\left(Z^{\prime} Z-\kappa_{*} Z^{\prime}\left(I-P_{X}\right) Z\right) a_{i}^{*}=\left(Z^{\prime} Q_{\kappa_{*}} Z\right) a_{i}^{*}=0
$$

where Q_{κ} is as defined before, and $\hat{\alpha}_{\text {LIML }}^{i}$ is obtained from a_{i}^{*} by $Z_{i}^{\prime} Q_{\kappa_{*}}\left(y_{i}-Z_{i} \hat{\alpha}_{\text {LIML }}^{i}\right)=0$. We have

$$
\hat{\alpha}_{\text {LIML }}^{i}=\left(Z_{i}^{\prime} Q_{\kappa_{*}} Z_{i}\right)^{-1} Z_{i}^{\prime} Q_{\kappa_{*}} y_{i}
$$

which defines the LIML estimator as a k-class estimator.
The interpretation of $\hat{\alpha}_{\text {LIML }}^{i}$ as a k-class estimator is very useful to derive its asymptotic properties. It is indeed not difficult to show that

$$
\kappa_{*}=1+O_{p}\left(\frac{1}{n}\right)
$$

since

$$
\kappa_{*}-1 \leq \frac{a_{i}^{0 \prime} Z^{\prime} P_{X} Z a_{i}^{0}}{a_{i}^{0 \prime} Z^{\prime}\left(I-P_{X}\right) Z a_{i}^{0}} \leq \frac{u_{i}^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u_{i}}{u_{i}^{\prime} u_{i}-u_{i}^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u_{i}}
$$

The LIML estimator is therefore asymptotically equivalent to the single equation IV estimator.

Moreover, recall that we have

$$
P_{X}\left(y_{i}-Z_{i} \hat{\alpha}_{\mathrm{IV}}^{i}\right)=0
$$

for the just-identified equation. Noticing that $P_{X}=Q_{\kappa}$ with $\kappa=1$ and $\kappa \geq 1$, we may conclude that $\kappa_{*}=1$ in this case. This, however, implies that

$$
\hat{\alpha}_{\mathrm{LIML}}^{i}=\hat{\alpha}_{\mathrm{IV}}^{i}
$$

for the just-identified equation.

5.3 Exercises

1. Let a SEM be given by

$$
\begin{aligned}
& y_{1 t}=\alpha_{11} y_{2 t}+\alpha_{12} x_{1 t}+u_{1 t} \\
& y_{2 t}=\alpha_{21} x_{1 t}+\alpha_{22} x_{2 t}+u_{2 t}
\end{aligned}
$$

and answer the following questions.
(a) Compare 2SLS, 3SLS, LIML and FIML estimators for the parameters α_{11} and α_{12} in the first equation.
(b) Now suppose $\alpha_{21}=0$. How would your answer to (a) change?
2. Consider a SEM given by

$$
\begin{aligned}
& y_{1 t}=\beta y_{2 t}+u_{1 t} \\
& y_{2 t}=\gamma_{1} x_{1 t}+\gamma_{2} x_{2 t}+u_{2 t}
\end{aligned}
$$

with the sample moment matrix

	y_{1}	y_{2}	x_{1}	x_{2}
y_{1}	10	2	3	1
y_{2}	2	5	1	1
x_{1}	3	1	2	1
x_{2}	1	1	1	1

Answer the following questions.
(a) Compute 2SLS, 3SLS, LIML and FIML estimates for β.
(b) Suppose the covariance matrix of $u_{1 t}$ and $u_{2 t}$ is

$$
\Sigma=\left(\begin{array}{rr}
\sigma^{2} & \sigma^{2} \\
\sigma^{2} & 2 \sigma^{2}
\end{array}\right)
$$

Find the FIML estimates of β, γ_{1} and γ_{2}.

